矩阵指数

✍ dations ◷ 2025-10-27 04:54:59 #矩阵论,李群,指数

矩阵指数是方块矩阵的一种矩阵函数,与指数函数类似。矩阵指数给出了矩阵李代数与对应的李群之间的关系。

设为×的实数或复数矩阵。的指数,用或exp()来表示,是由以下幂级数所给出的×矩阵:

以上的级数总是收敛的,因此的指数是定义良好的。注意,如果是1×1的矩阵,则的矩阵指数就是由的元素的指数所组成的1×1矩阵。

设和为×的复数矩阵,并设和为任意的复数。我们把×的单位矩阵记为,把零矩阵记为0。

我们可以从指数级数的定义直接得到矩阵指数的如下性质:

接下来是一个关键性质:

由此导出的推论有:

矩阵指数的一个重要性,是它可以用来解微分方程。从(1)可知,以下微分方程

其中是矩阵,具有解

矩阵指数也可以用来解非齐次方程:

参见以下的例子。

当不是常数时,以下形式的微分方程没有闭式解:

但马格努斯级数可以给出无穷级数形式的解。

根据雅可比公式,对任意复矩阵,下列迹等式成立:

det ( e A ) = e tr ( A )   {\displaystyle \det(e^{A})=e^{\operatorname {tr} (A)}~} ) ≠ 0,从而必可逆。

我们知道,对于任何实数(标量)和,指数函数都满足公式 + = 。类似的等式对于可交换矩阵也成立:如果矩阵和是可交换的(即 = ),则:

但是,如果它们不是可交换的,则以上的等式不一定成立。

这个命题反过来不成立:+=并不一定就意味着和是可交换的。但是,如果和只含有代数数,而且它们的大小至少为2×2,则反过来也成立。

和不可交换的情况可以用以下方法计算:

即使 X {\displaystyle X} 的逆矩阵由−给出。这与复数的指数总是非零的事实类似。这样,矩阵指数就给出了一个映射:

这是从所有×矩阵的空间到一般线性群(所有非奇异方阵所组成的群)的映射。实际上,这个映射是满射,就是说每一个非奇异方阵都可以写成某个矩阵的指数。矩阵对数就是这个映射的逆映射。

对于任何两个矩阵和,我们有:

其中|| · ||表示任意的矩阵范数。从中可以推出,指数映射在(C)的紧子集内是连续和利普希茨连续的。

以下的映射

定义了一般线性群中的一条光滑曲线,当 = 0时穿过单位元。实际上,这给出了一般线性群的一个单参数子群,这是由于:

这条曲线在点的导数(或切向量)由以下等式给出:

= 0时的导数就是矩阵,所以我们可以说,是这个单参数子群的推广。

更加一般地:

寻找计算矩阵指数的可靠和准确的方法是困难的,目前在数学和数值分析领域中仍然是一个正在研究的话题。有些方法列举如下。

如果矩阵是对角的:

则把主对角线上的所有元素取指数,就是原矩阵的指数:

这也允许了我们计算可对角化矩阵的指数。如果 A = U D U 1 {\displaystyle A=UDU^{-1}} 是对角矩阵,则 e A = U e D U 1 {\displaystyle e^{A}=Ue^{D}U^{-1}} ,有 = 0,则矩阵称为幂零矩阵。在这种情况下,矩阵指数可以直接从级数展开式来计算,这是因为级数在有限个项后就终止了:

当矩阵的最小多项式可以分解为一次多项式的积时,它就可以表示为以下的和:

其中:

这称为Dunford分解。

这就是说,我们可以通过化为前两种情况,来计算的指数:

注意为了让最后一步成立, 和必须是可交换的。

另外一个密切相关的方法,是利用的若尔当标准型。假设 =  −1,其中是的若尔当标准型。那么:

另外,由于

因此,我们只需要知道怎样计算若尔当块的矩阵指数。但是,每一个若尔当块都具有形式

其中是幂零矩阵。则这个区块的矩阵指数由下式给出:

假设我们想要计算以下矩阵的指数。

它的若尔当型为:

其中矩阵由下式给出:

我们首先来计算exp()。我们有:

1×1矩阵的指数仅仅是该矩阵的元素的指数,因此exp(1(4)) = 。 J 2 ( 16 ) {\displaystyle J_{2}(16)} ) = λ exp()来算出:

因此,原矩阵的指数为:

矩阵指数在解线性微分方程时十分有用。前面曾提到,以下形式的微分方程

具有解C。如果我们考虑以下向量

我们就可以把线性微分方程表示为:

如果我们作一个猜想,把两边乘以一个积分因子 −,便得到:

如果我们可以计算,那么就得到了微分方程的解。

假设我们有以下的微分方程组:

相关的矩阵为:

在以上的例子中,我们计算了矩阵指数

因此微分方程组的通解为:

也就是说,

对于非齐次的情况,我们可以用积分因子的方法(类似于参数变换的方法)。我们找到形为p() = exp()()一个特解:

为了让p为方程的解,必须有:

因此,

其中由问题的初始条件决定。

假设我们有以下的微分方程组:

那么我们有

以及

用前面的方法,我们可以得出齐次微分方程的解。由于齐次方程的通解与非齐次方程的特解的和就是非齐次方程的通解,因此我们只需要找到一个特解(用参数变换法)。

我们有:

进一步简化,就可以得到原方程的特解。

相关

  • 改革历法历法改革是一种对日历系统的重大修正。这个词有时适用于切换至不同的日历,以取代现行的日历。大多数日历有可能改变或改革的几个规则:历史上,大多数的历法改革都是为了与天文年
  • 请融化我吧2019年9月28日 (2019-09-28)-2019年11月17日 (2019-11-17)《请融化我吧》(韩语:날 녹여주오),为韩国tvN于2019年9月28日起播出的周末连续剧,由《秘密花园》、《绅士的品格》的申
  • 德拉瓦州特拉华州(英语:State of Delaware),或译德拉维尔州,简称特州,为美国的一州,是最早加入美国联邦的州,所以又有“第一州”这个称呼。“第一州”这个称呼来自特拉华州是第一个复决通过
  • 金乡金乡县,古称东缗,是中国山东省济宁市所辖的一个县。总面积为885平方千米,2001年人口为60万。历史上的昌邑县就在境内,曾是兖州的州治。金乡县辖9个镇、4个街道、2个经济开发区,共
  • 芦田爱菜芦田爱菜(日语:芦田愛菜,2004年6月23日-),日本儿童演员。出生于兵库县西宫市,现居于东京都,隶属于Jobbykids(日语:ジョビィキッズプロダクション)旗下。芦田爱菜在朝日放送的电视剧中首
  • 加贺一郎加贺一郎(1898年6月10日-1946年11月5日)是日本男子田径运动员。为提升台湾田径水平,台湾体育协会曾在1930年7月邀请加贺一郎来台讲授。
  • 理查德·戈特弗里德理查德·“迪克”·N·戈特弗里德(英语:Richard 'Dick' N. Gottfried,1947年5月16日-)是一名来自曼哈顿的美国民主党政治人物,纽约州众议院议员,美国公民自由联盟成员。
  • 流放者的归来《流放者归来》是马尔科姆·考利(Malcolm Cowley)所著的带自传性质的文学批评史。它主要描述了一代美国文学青年(有的人在后来成为了大文豪,如TS·艾略特、普鲁斯特和乔伊斯)在19
  • 大雄的天方夜谭《哆啦A梦:大雄的天方夜谭》(日语:ドラえもん のび太のドラビアンナイト)是在1991年推出的哆啦A梦电影作品,同为第12个作品。有一次大雄他们用哆啦A梦的道具进入画册的世界,但静香
  • 真因子和数列选择一个正整数 k {\displaystyle k} 作为一个数列的开首,数列的之后的项都是上一项的真因子之和(因数函数