巴巴散射

✍ dations ◷ 2025-12-05 08:23:15 #巴巴散射
量子电动力学中,巴巴散射(英文:BhaBha Scattering)是指电子-反电子的散射过程,其中伴随有交换虚光子:巴巴散射散射振幅的领头项包含有两个费曼图的贡献:一个是湮灭过程,一个是散射过程。巴巴散射的散射率在正负电子对撞机中被用来当作光度的监视指标。在经典电动力学中,巴巴散射实际就是正负电子通过库仑力相互吸引的过程。巴巴散射的名称来源于印度物理学家霍米·J·巴巴(Homi J. Bhabha)。下面的推导是量子电动力学中用费曼图计算粒子散射截面的典型方法。对自旋取平均的散射微分截面为这里s,t和u是曼德尔斯坦变量, α {displaystyle alpha ,} 是精细结构常数, θ {displaystyle theta ,} 是散射角。散射截面的计算中忽略了电子的质量对碰撞的能量的贡献,而只考虑了交换虚光子过程所做的贡献。这个近似对于和Z玻色子的质量(约 91 G e V {displaystyle 91GeV,} )相比很小的碰撞能量是成立的;对于相比不那幺小的碰撞能量,Z玻色子的交换过程所做的贡献也要被考虑。在此条目中,曼德尔斯坦变量定义为其中的近似在高能近似(相对论极限)中成立。两个费曼图对散射矩阵的矩阵元都有贡献。这里用k和k' 表示反电子的四维动量,用p和p' 表示电子的四维动量,通过费曼图的计算法则可得到由费曼图给出的矩阵元:注意到两个过程的矩阵元相差一个负号。计算无偏振的散射截面时,需要对所有入射粒子的自旋取平均 (自旋可能的值为se-和se+),并且对所有出射粒子的自旋求和。即,首先计算 | M | 2 {displaystyle |{mathcal {M}}|^{2},} :下面我们分别计算过程所包含的三项。下面我们对四个粒子的所有自旋求和。这里用s和s' 来表示电子的自旋,r 和r' 来表示反电子的自旋。这是解的精确形式,但在讨论电子时一般都只考虑能量远大于电子质量的情况,因此忽略电子质量从而得到下面的简化形式:湮灭项的计算过程与散射项类似;由于两个费曼图有交换对称性,并且初始态和最终态的粒子完全相同,因此可以简单地通过重新排列动量的位置得到结果:对于干涉项所用的步骤相同,将三项加在一起从而得到的最终解为狄拉克的四分量旋量u和v满足的完备性关系是简化狄拉克矩阵的迹的方法是迹恒等式,此处用到的三个恒等式为:从这些恒等式可得到一些简化方法,如巴巴散射在很多正负电子对撞实验中用作对实验光度的监测,精确的光度测量在精确的散射截面测量实验中必不可少。

相关

  • 乔治主义乔治主义是一种经济意识形态,由亨利·乔治提出。乔治主义的观点是每个人拥有他们所创造的东西,但是所有由自然而来的东西,尤其是土地,都属于全人类共有。乔治主义通常与对土地的
  • 微量白蛋白尿微量白蛋白尿(microalbuminuria)是用来描述白蛋白尿水平适度增加的医学术语。它发生在肾泄漏少量白蛋白(Human serum albumin)进入尿液里、换言之,即在肾脏肾小球的白蛋白有
  • 古典时代晚期古典时代晚期又称作古代晚期、晚古时期或近古代(英语:Late Antiquity),是历史学上的术语,意指古典古代到中世纪之间的期间,地区包含了欧洲的大部分和环地中海地区,历史学者彼得·布
  • 就业推销骗术就业推销法(日文:就活商法)为一种推销诈骗手法,佯装会提供估工作机会然而吸引来想赚钱的求职者最后都成了消费者,在话术中被推销想获得工作机会,必须先购买一些物品或服务,而最后
  • 随意肌骨骼肌是一种肌组织。此外心肌和平滑肌亦属于肌组织。肌肉中的肌细胞又称肌纤维,而骨骼肌的肌细胞属于多核细胞,有几十个甚至上百个呈扁椭圆形的细胞核。骨骼肌纤维呈长圆柱状
  • iUniversity of California Press加州大学出版社(英语:University of California Press,UC Press),是属于美国加州大学的学术出版社。它成立于1893年,为1868年成立的加州大学的教授出版著作和论文。其总部位于加州
  • 呋塞米呋塞米(Furosemide),市面常见的商品名为来适泄锭(Lasix),系一种用来治疗因心脏衰竭、肝硬化或肾病变引起的水肿,也可治疗高血压的药。使用剂量依人而定,可以经静脉注射或口服给药,口
  • 伯父伯父是中文中对亲属的称谓,指父亲的哥哥,也叫伯伯、阿伯、堂伯,或简称伯。古称从父。不过,“伯”也可以指大伯子,即丈夫的哥哥。英文中,伯父与叔父、舅父等统称为Uncle。伯父妻子
  • 厄勒海峡大桥厄勒海峡大桥(或译奥瑞桑桥,欧雷松德大桥,丹麦文:Øresundsbroen,瑞典文:Öresundsbron,丹瑞混合名称:Øresundsbron)是一条行车铁路两用,横跨厄勒海峡的大桥。其大桥隧道两者结合的长
  • Greenwood Press格林伍德出版集团(ABC-CLIO/Greenwood,Greenwood Publishing Group,简称GPG)是ABC-CLIO(英语:ABC-CLIO)旗下的学术与教育(中学至大学)出版商。前身是1967年的成立Greenwood Press(格林