关系代数 (抽象代数)

✍ dations ◷ 2025-02-23 16:41:33 #代数逻辑,数学关系,关系代数

在数学中,关系代数是支持叫做逆反(converse)的对合一元运算的剩余布尔代数。激发关系代数的例子是在集合 上的所有二元关系的代数 2 X 2 {\displaystyle 2^{X^{2}}} · 被解释为平常的二元关系复合。关系代数的早期形式形成于十九世纪德·摩根、皮尔士和 Ernst Schröder 的工作。它今日的纯等式形式是阿尔弗雷德·塔斯基和他的学生在 1940 年代开发的。

关系代数 (, ∧, ∨, ¬, 0, 1, ·, I, ▷, ◁,   ˘ {\displaystyle {\breve {\ }}} ▷ 可以使用复合和逆反而定义为   ˘ {\displaystyle {\breve {\ }}} ,对偶的 ◁ 定义为 · ˘ {\displaystyle {\breve {}}} , ∧, ∨, ¬, 0, 1, ·, I,   ˘ {\displaystyle {\breve {\ }}} ˘ {\displaystyle {\breve {}}} ▷I 要么 I◁,从而关系代数可以有同剩余布尔代数一样的标识。对于这个定义公理变成了 (▷I)▷I = = I◁(I◁)。但是这简单的断言了 ▷I 和 I◁ 是对合。Jónsson 和 Tsinakis 已经证明了如果任何一个是对合则另一个也是并且它们是同一个运算,也就是逆反。这导致了一个特别直接的定义:

当 ◁ 被看作某种形式的 对 的商的时候,I 可看作对应的乘法单位元,I◁ 可被理解为类似于 1/ 的 的“倒数”,某些作者使用这个术语作为逆反的同义词。

因为剩余布尔代数是用有限多等式公理化的,所以关系代数也是,因此它形成了一个有限公理化的簇。

1. 任何布尔代数都可作为关系代数,通过选用复合(幺半群乘法)为合取。这种复合的解释唯一的确定逆反为恒等 ( = ),而剩余 \ 和 / 二者都是蕴涵 →,也就是 ¬∨。

2. 激发关系代数的例子依赖于在集合 上的二元关系 作为任何子集 ⊆ 2 的定义。由在 上的所有二元关系构成的幂集 2 X 2 {\displaystyle 2^{X^{2}}} · = ∧ 它可以成为关系代数,给出的 · 的标准解释是 (·) = ∃.。就是说,有序对 (,) 属于关系 ·, 只有在存在 ∈ 使得 (,) ∈ 并且 (,) ∈ 的时候。这种解释唯一的确定 \ 构成自所有有序对 (,) 使得对于所有 ∈ ,如果 则 。对偶的说 / 构成自所有有序对 (,) 使得对于所有 ∈ ,如果 则 。转换 = ¬(y\¬I) 接着建立 的逆反   ˘ {\displaystyle {\breve {\ }}} ,) 使得 (,) ∈ 。

3. 这个例子的重要推广是幂集 2,这里的 ⊆ 2 是在集合 上任何等价关系。这是个推广因为 2 自身是等价关系,也就是由所有有序对构成的完全关系。而 2 在 ≠ 2 的时候,不是 2 X 2 {\displaystyle 2^{X^{2}}} 2,顶元素 1 是 而不是 2),它仍可作为使用相同运算定义的关系代数。它的重要性在于这个“可表示的关系代数”作为同构于在某个集合上的某个等价关系 的关系代数 2 的子代数的任何关系的定义中。可直接证明所有可表示的关系代数的类 RRA 是准簇,它生成自对某个集合 的形如 2 X 2 {\displaystyle 2^{X^{2}}} 是完全的当且仅当 I ≤ ·   ˘ {\displaystyle ^{\breve {\ }}} 是确定性的当且仅当   ˘ {\displaystyle ^{\breve {\ }}} ≤ I。

函数是不是完全和确定性的二元关系。下两个性质概括了通常只适用于函数的所有二元关系性质。

是自反的当且仅当 I ≤ 。

是传递的当且仅当 · ≤ 。预序是自反传递二元关系。

是反对称的当且仅当 ∧   ˘ {\displaystyle ^{\breve {\ }}} 是对称的当且仅当 ≤   ˘ {\displaystyle ^{\breve {\ }}} 。等价关系是对称预序。

在 Tarski 和 Givant (1987)的著作中详细讨论了RA 的元数学。RA 完全构成自只使用一致替换和对相等者的相等代入操纵的等式。二者的规则常见于对于学校的数学教育和一般的抽象代数。所以 RA 证明可以让所有数学用更熟悉的方式来完成,而不像一般的数理逻辑那样。

RA 可以表达任何(精确地说逻辑等价于)包含不多于三个变量的一阶逻辑(FOL)公式(一个给定的变量可被量化多次只要量词不嵌套)。另人惊讶,这个 FOL 片段足够表达皮亚诺算术和几乎所有已经提议的公理化集合论。所以 RA 在效果上是代数化几乎所有数学的一种方式,而免除了 FOL 和它的连结词、量词、十字转门和肯定前件。因为 RA 可以表达皮亚诺算术和集合论,哥德尔不完备性定理适用于它, RA 是不完备的、不可完备的和不可判定性的。(N.B. 这些性质不能描述 RA 的布尔逻辑片段。)

形成的类 RRA 的可表示的关系代数是同构于构成自在某个集合上的二元关系并闭合于 RA 运算的标准解释的某个关系代数的那些关系代数。比如使用伪基本类的方法就可轻易证明,就是 RRA 是个准簇,也就是可用全称 Horn 理论公理化。在 1950 年 Roger Lyndon 证明了成立于 RRA 而不成立于 RA 的等式的存在,就是说 RRA 生成的簇是簇 RA 的真子簇。在 1955 年 Alfred Tarski 证明了 RRA 自身是个簇,但是 Donald Monk 在 1964 年证明它没有有限公理化,不像 RA 可以通过定义有限公理化。不是所有关系代数都是可表示的是它同布尔代数之间的根本区别,它可以表示为某个集合的闭合在并集、交集和补集下的子集的集合。

德·摩根在 1860 年创立了 RA,而皮尔士深化了它并着迷于它的哲学力量。德·摩根和皮尔士的工作主要为人所知于 Ernst Schröder 在他的《Vorlesungen über die Algebra der Logik》(1890-1905) 中给出的扩展和终极形式中。《数学原理》受到 Schröder 的 RA 的强烈影响,但他却只被认可为这个概念的发明者。这里提供 RA 的基础论文是 Tarski (1941) 给出的;他设计了上述公理,他和他的学生直到今天仍在持续致力于 RA。Tarski 和 Givant (1987) 的很多内容是 Tarski 在 1940 年代独自完成,他在 1970 年代随着 Steven Givant 的帮助而重返这个主题。RA 的更详细的历史请参见 Maddux (2006)。

相关

  • 圣但尼圣殿圣但尼圣殿主教座堂(法语:Basilique cathédrale de Saint-Denis),简称圣但尼圣殿(Basilique de Saint-Denis),前身为圣但尼修道院(Abbaye de Saint-Denis),位于法国巴黎近郊的圣但尼,
  • 对流有效势能对流可用位能(英语:Convective available potential energy)是大气科学当中使用的名词,为评估垂直大气是否稳定、对流是否容易发展的指标之一。近地面的空气块受垂直风切扰动或
  • 恙虫见内文恙螨目(Trombidiformes),亦作绒螨目,是一个数量庞大而且分散的一个目,属于蛛形纲蜱螨亚纲螨形总目之下,其幼虫英文称为chigger。根据2004年时的分类,本目包括有125个科,超过2.
  • 朝贡制度朝贡(拉丁语:tributum),又称进贡、上贡,是一方将财富以某种形式给予另一方,以表示顺从或结盟,尤其是君主国里臣民献上礼物给君主,或藩属国也会向宗主国献上礼物。这些礼物称为贡品。
  • 正部级国务院直属事业单位是直属中华人民共和国国务院的事业单位。它不是国家行政机关,但中华人民共和国国务院授权其中一些单位行使一定的行政职能。《国务院关于国家行政机关和企
  • 泌尿外科人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学 泌尿外科是专门研究男女泌尿系统与男
  • 胶体渗透压胶体渗透压(oncotic pressure、colloid osmotic pressure、胶体膨胀压、血浆胶体渗透压),是经由蛋白质所施加之渗透压的一种形态、特别是白蛋白。而在血管中的血浆(血/液体)之
  • 水车水车,是利用水流产生机械能(位能与动能)的一种原动机。在蒸汽机、电动机发明以前,人类常用它来取水、脱谷、制粉、纺织。水车轮一般以木材制成,也可用金属成型。一个用于发电的水
  • 黄帝祭“二月二,龙抬头;三月三,生轩辕”,夏历三月初三是轩辕黄帝诞生的日子,因而每年的三月三和清明节是祭祀黄帝最隆重的日子。黄帝作为中国人的共同祖先,被华人所敬仰和崇拜。祭祀轩辕
  • 巴西中西部巴西中西部(葡萄牙语:Região Centro-Oeste do Brasil),是巴西的5个地理分区之一,包括戈亚斯州、马托格罗索州、南马托格罗索州及联邦区。总面积1,612,077.2平方公里。该地区总人