杨-米尔斯理论

✍ dations ◷ 2025-11-28 01:52:16 #物理中未解决的问题,量子场论,基本物理概念,规范理论,对称,陈-西蒙斯理论

杨-米尔斯理论是一种基于SU(N)群的规范场论,在数学和物理学中有很重要的应用。例如,粒子物理学的标准模型是一种杨米论,有 G = U ( 1 ) × S U ( 2 ) × S U ( 3 ) {\displaystyle G=U(1)\times SU(2)\times SU(3)} 的规范。杨米作用量是

S Y M = 1 2 t r ( F F ) {\displaystyle {\mathcal {S}}_{YM}={\frac {1}{2}}\int -tr(F\wedge *F)}

在1953年,沃尔夫冈·泡利将五维的卡鲁扎-克莱因理论拓展到六维。 但是,没有证据表明,他推导了规范场的拉格朗日量或者将其量化。因为他发现到他的理论“导致一些相当不实际的阴影粒子”,所以选择不发表他的成果。虽然这项成果没有正式写成论文发表,但他之后在苏黎世的演讲中谈论过这个理论。 最近的研究表明,扩展的卡鲁扎-克莱因理论和当年杨振宁与罗伯特·米尔斯的方程不同,因为前者包含附加项。

1954年,杨振宁与罗伯特·米尔斯写下了现今使用的杨-米尔斯理论,将原本可交换群的规范理论(应用的量子电动力学)拓展到不可交换群,以解释强相互作用。 杨 - 米尔斯的想法受到了沃尔夫冈·泡利的批评,原因在于杨-米尔斯理论的量子必须质量为零以维持规范不变性,但是这些“质量为零”的粒子在自然界中并没有见到,所以杨振宁与罗伯特·米尔斯论文无法解释b量子的质量问题。因此,这个理论在当时并未受到重视。一直到1960年代,为了给这些无质量的粒子以质量,南部阳一郎、杰弗里·戈德斯通、乔瓦尼·乔纳-拉希尼欧(英语:Giovanni Jona-Lasinio)等人开始运用对称性破缺的机制,从零质量粒子的理论中去得到带质量的粒子,杨-米尔斯理论的重要性才显现出来。

1967年, 温伯格和格拉肖基于规范对称的自发破缺,把格拉肖在1961年提出的电弱统一理论建立在了杨-米尔斯场论的基础之上,并引入了希格斯机制,提出具有U(1) ×SU(2)规范对称性的电弱理论。结合渐近自由度的思想,1972年,弗里兹希(H. Frizsch)和盖尔曼(M. Gell-Mann)提出了具有SU(3)规范对称性的杨-米尔斯理论, 建立了量子色动力学。描述电磁力和弱力的 电弱理论和描述强力的量子色动力学一起构成现今所谓的粒子物理的标准模型。

由于杨米尔斯理论的重要性及杨振宁在该理论工作的开创性贡献,1994年,在授予杨振宁鲍尔奖的颁奖词评价道“这项工作已经排列在牛顿、麦克斯韦和爱因斯坦的工作之列,并必将对未来几代产生类似的影响。”

L Y M 2 t r ( F F ) = 1 4 ( F μ ν i ) 2 {\displaystyle {\mathcal {L}}_{YM}\equiv -2tr(F\wedge *F)=-{\frac {1}{4}}(F_{\mu \nu }^{i})^{2}}

其中 F = d A + A 2 = d D A {\displaystyle F=dA+A^{2}=d_{D}A} 是曲率形式,A是联络形式。 d D A {\displaystyle d_{D}A} 外共变导数。F是矩阵场,元素等于

F μ ν = μ A ν + {\displaystyle F_{\mu \nu }=\partial _{\mu }A_{\nu }+}

F μ ν i μ A ν i ν A μ i + g f i j k A μ j A ν k {\displaystyle F_{\mu \nu }^{i}\equiv \partial _{\mu }A_{\nu }^{i}-\partial _{\nu }A_{\mu }^{i}+gf^{ijk}A_{\mu }^{j}A_{\nu }^{k}}

的确,杨米尔斯场论是电磁学、弱电相互作用、量子色动力学、以及标准模型的大推广。所以杨米尔斯理论在物理学和数学中有极大的重要性。据我所知,杨米尔斯描述四分之三个基本相互作用。相对论描述第四个作用:重力。

阅读瞬子。

阅读杨-米尔斯存在性与质量间隙、路径积分表述。杨米尔斯有渐近自由、手征对称性破缺、以及质量间隙。YM场论也有夸克禁闭。但是现在没有数学证明,只有计算机和格点规范理论支持的猜想。

几何和数学


相关

  • 世纪一个世纪代表一百年,通常是指连续的一百年。当用来计算日子时,世纪通常从可以被100整除的年代或此后一年开始,例如2000年或2001年。这种奇数的纪年法来自于耶稣纪元后,其中的1年
  • 金玺诏书1356年金玺诏书(德语:Goldene Bulle, 拉丁语:Bulla Aurea)是由神圣罗马帝国皇家议会在纽伦堡帝国议会(英语:Diet of Nuremberg)和梅斯帝国议会 (1356-1357)(英语:Diet of Metz (1356/5
  • 中华民国岛屿本文叙述中华民国政府实际统治领域的岛屿。依中华民国台湾、澎湖、金门、马祖及其附属岛屿划分如下:(8)以下诸岛皆隶属于基隆市中正区(1)(2)(1)(1)(2)(1)(6)(2)(2)(10)(1)(4)澎湖县(90)
  • 泽泻泽泻(学名:Alisma plantago-aquatica),又名藚、水舄。为多年生沼生草木,属泽泻科。其根状茎较短,叶子呈长椭圆形,基生。泽泻夏季开白花,排成大型轮状分枝的圆锥花序;花两性;内外轮花被
  • 871年重要事件及趋势逝世重要人物
  • 大田坐标:36°21′04″N 127°23′06″E / 36.351°N 127.385°E / 36.351; 127.385大田广域市(朝鲜语:대전광역시/大田廣域市 Daejeon gwangyeoksi */?)位于韩国中部,是韩国第五大
  • 清水市清水市(Clearwater, Florida)是美国佛罗里达州皮尼拉斯县的县治,位于佛罗里达半岛西部皮尼拉斯半岛上。中为沿海水道,西为墨西哥湾。面积97.7平方公里,2006年人口107,742人。1891
  • 萨班斯-奥克斯利法案财务会计 · 管理会计 ·《萨班斯・奥克斯利法案》(英语:Sarbanes-Oxley Act),是美国国会根据安然有限公司及世界通讯公司等财务欺诈事件破产暴露出来的公司和证券监管问题所
  • 地球上的生灵地球上的生灵 是一部2005年的美国纪录片,探讨人类如何将其他动物当成宠物、食物、服装、娱乐和科学研究实验。影片旁白由影星瓦昆·菲尼克斯担任,配乐则由美国音乐人莫比创作
  • 23街车站23街车站(英语:23th Street station)可以指: