Wess-Zumino-Witten模型

✍ dations ◷ 2025-11-20 23:57:57 #李群,量子场论,共形场论,可解模型

理论物理 与 数学中, Wess-Zumino-Witten (WZW) 模型,又称Wess-Zumino-Novikov-Witten model,乃一简单之 共形场论,其解可以用仿射李代数表达。其名来自 Julius Wess、Bruno Zumino、Sergei P. Novikov 与 Edward Witten。

设为紧致单连通李群,设为其李代数。设γ为黎曼球面 S 2 {\displaystyle S^{2}} -值场

Wess-Zumino-Witten 模型是γ所定义之非线性 sigma 模型,其作用为

其中首项为量子场论中常见之动量项,重复指标相加,度量为欧几里得度量, K {\displaystyle {\mathcal {K}}} 上之Killing 二次式,而 μ = / x μ {\displaystyle \partial _{\mu }=\partial /\partial x^{\mu }} WZ 项人称 ,其定义为

其中 为交换子, ϵ i j k {\displaystyle \epsilon ^{ijk}} =1,2,3, y i {\displaystyle y^{i}} 之基向量,则 K ( e a , ) {\displaystyle {\mathcal {K}}(e_{a},)} 之 结构常数。结构常数是反对称的,因而定义了一G 上一个三次微分形式。故上述积分实为球 B 3 {\displaystyle B^{3}} 、其拉回为 γ {\displaystyle \gamma ^{*}} 需符合以下“量子条件”:

π 3 ( G ) = Z {\displaystyle \pi _{3}(G)=\mathbb {Z} } 为一整数——黏合后影射之卷绕数。两种延拓会带来相同的物理系统,若

是故,耦合常数必须为整数。当是半单李群,或不连通紧致群, 则由每一连通部所给之一整数构成此阶(level)。

此拓扑障碍亦可以相应之仿射李代数之表示论体现。 当每一阶为一整数,则存在该仿射李代数之酉最高权表示,而其最高权为 dominant integral。此等表示是可积表示。

我们亦常遇相应于一非紧致单李群-例如 SL(2,R)-之 WZW 模型。Juan Maldacena 与 Hirosi Ooguri 以此描述三维反 de sitter 空间上之弦理论。此时 π3(SL(2,R))=0,故不存在拓扑障碍,而其阶亦不必为整数。

上述各 WZW 模型俱定义于黎曼球面上。我们亦可定义一般紧致黎曼曲面上之场γ。

相关

  • 镇痛剂肾病镇痛剂肾病(Analgesic nephropathy)是由镇痛药,比如阿司匹林、非那西汀、对乙酰氨基酚等所诱发的肾脏损伤疾病。镇痛剂肾病这个词语通常是指来自于过度使用这些镇痛药物的组
  • 悬链线悬链线是一种常用曲线,物理上用于描绘悬在水平两点间的因均匀引力作用下的软绳的形状,因此而得名。它的公式为:其中cosh是双曲余弦函数, a
  • 过二硫酸过二硫酸(或称为“过氧二硫酸”、“过硫酸”或“马歇尔酸”)是一种硫的含氧酸,分子式为H2S2O8 。 其结构可以表示为HO3SOOSO3H。虽然过二硫酸分子中的硫的氧化态为+6,但因为该分
  • 布珊高尚-巴蒂斯塔·约瑟夫·条冬内·布珊高(法语:Jean-Baptiste Joseph Dieudonné Boussingault,1801年2月1日-1887年5月11日),法国化学家,对农业科学、石油科学与冶金学都有贡献。曾提
  • 休格氏魮休格氏魮(学名:)为辐鳍鱼纲鲤形目鲤科的一种鱼类。被IUCN列为濒危保育类动物,分布于非洲几内亚的圣保罗河及利比里亚Lofa河流域,本鱼具长触须,体侧具数个黑色斑块,背鳍软条11枚;臀鳍
  • 三氯化铱三氯化铱是一种无机化合物,化学式为IrCl3,存在无水物和三水合物。无水的三氯化铱相对少见,为暗绿色固体,但其水合物可用于制备其他铱化合物。铱以六氯合铱(IV)酸铵(NH4)2的形式
  • 施泰尔贝格湖坐标:51°12′48″N 9°33′8″E / 51.21333°N 9.55222°E / 51.21333; 9.55222施泰尔贝格湖(德语:Stellbergsee),是德国的湖泊,位于该国中部,由黑森州负责管辖,处于施瓦尔姆-埃德
  • 陈表 (嘉靖进士)陈表(?-?),字献忠,湖广安乡县人,明朝政治人物。嘉靖二年(1523年)癸未科进士。嘉靖八年(1529年)官直隶丹阳县知县,擢监察御史。
  • 自性身自性身(梵文:Svābhāvikakāya;藏文:ངོ་བོ་ཉིད་སྐུ་,威利转写:ngo bo nyid sku),又称法界体性身、金刚体性身,为如来第四身,主要出现在藏传佛教金刚乘。与法身为一体两
  • 囍宴 (电影)《囍宴》(英语:)是1993年的一部伦理题材电影。剧情叙说一位旅居美国、来自台湾的男同性恋者,为了让父母安心,娶了一位来自上海的非法移民女画家,让她获得绿卡作为交换条件。然而,这