强相互作用

✍ dations ◷ 2025-05-16 01:45:58 #强相互作用
强相互作用是作用于强子之间的力,是所知四种宇宙间基本作用力最强的,也是作用距离第二短的(大约在 10-15 m 范围内,比弱相互作用的范围大)。另外三种相互作用分别是引力、电磁力及弱相互作用。核子间的核力就是强相互作用。它抵抗了质子之间的强大的电磁力,维持了原子核的稳定。强相互作用也将夸克基本粒子结合成为质子及中子等强子,这也是组成大部分物质的粒子。而且一般质子或中子里,大部分的质能是以强相互作用场能量的形式存在,夸克只提供了1%的质能。强相互作用可以在二个地方看到:较大的尺度(约1至3飞米)下,强相互作用将质子及中子结合成为原子的原子核,较小的尺度(约0.8飞米,约为核子的尺寸)下,强相互作用将夸克结合,成为质子、中子或其他强子。强相互作用的作用力非常强,大到束缚一个夸克的能量可以转换为新的夸克对的质量,强相互作用的这个性质称为夸克禁闭。强相互作用是唯一强度不会随距离减小的作用力,但因为夸克禁闭,夸克会限制和其他夸克在一起,形成的强子之间会有残留的强相互作用,也称为核力,核力会随距离而迅速减少。撞击原子核释放的部分束缚能和产生的核力有关,而核力也用在核能及核聚变式的核武器中。强相互作用一般认为是由胶子传递的,胶子会在夸克、反夸克及其他胶子之间交换。胶子会带有色荷,色荷和人眼可见的颜色完全没有关系,色荷类似电荷,但色荷有六种(红、绿、蓝、反红、反绿、反蓝),因此会形成不同的力,有不同的规则,在量子色动力学(QCD)中有描述,这也是夸克-胶子相互作用的基础。吴秀兰等科学家对胶子发现有很大贡献的科学家,在1995年因此获得了欧洲物理学会髙能和粒子物理奖。在大爆炸后,电弱时期时,弱电相互作用和强相互作用分离,统一弱相互作用和电磁相互作用的电弱统一理论已经获得实验证实。科学家进一步预期有一个大统一理论可以统一弱电相互作用及强相互作用,现今有许多是大统一理论的理论,第一个是哈沃德·乔吉和谢尔登·格拉肖于1974年提出了最早的SU(5)大统一理论,但和实验不合,其他的理论有SO(10)模型、乔吉-格拉肖模型(英语:Georgi–Glashow model),但还没有一个是广为科学家接受,且有实验证实的理论,而且许多大统一理论都预言质子衰变,但目前也还没有实验支持,大统一理论也还是未解决的物理学问题之一。强相互作用比其他三种基本作用有更大的对称性,也就是说,在强相互作用中有更多的守恒定律。强相互作用不像引力和电磁相互作用那样是长程力而是短程力。但是它的力程比弱相互作用的力程长,约为10-15 m 。大约等于原子核中核子间的距离。对强相互作用本质的了解长期以来是物理学中的难题。人们曾经提出过许多强相互作用的理论,它们取得的成就都很有限。原因之一是理论中没有小参量,因而找不到可靠的近似方法。人们由强子的夸克模型和规范场的概念出发提出量子色动力学。在这个理论中,强相互作用是组成强子的夸克之间通过一些称为胶子的规范粒子场传递的作用。这个理论有在小距离处作用变弱的性质。它被认为是有希望的强相互作用基本理论。在1970年代以前,科学家不知道核子为何可以被束缚在原子核内。当时已经知道原子核是由质子和中子组成,质子带正电,中子不带电。由于正电荷之间会互相排斥,带正电的质子应该会造成原子核的裂解,但是却没有观测到类似的现象,因此需要有新的物理学说来解释此一现象。为了解释原子核中的质子没有因电磁力互相排斥,反而聚集在一起,科学家开始假设有一种较强的吸引力的存在,这种假想的作用力称为“强作用力”,科学家认为是在质子和中子等核子之间的基本作用力。后来发现质子和中子都不是基本粒子,都是由更小的夸克粒子所组成。最基本作用力是将夸克束缚在质子和中子中的作用力,核子之间的强作用力其实是上述作用力的副作用。量子色动力学解释夸克中带有一种称为色荷的物质(色荷和肉眼可见的颜色没有任何关系)。带有不同色荷的夸克因着强相互作用会互相吸引,其中的介质是一种称为胶子的粒子。强相互作用的“强”字,表示若在几个飞米或是更短的距离内,强相互作用的强度比其他三种基本作用力都强:其强度是电磁力的137倍、弱相互作用的106倍、重力的1039倍。量子色动力学(QCD)是现代对强相互作用的描述,是粒子物理学中标准模型的一部分。在数学上,量力色动力学是非阿贝尔群的规范场论,以称为SU(3)的空间对称群为其基础。基本粒子中,只有夸克及胶子会带着不会消失的色荷,因此基本粒子中也只有这两种会参与强相互作用,其作用的强度是依强相互作用耦合常数来决定,强度会被粒子的色荷所调整,这是群论中的性质。强相互作用和其他基本作用力不同,随着距离的增加,强相互作用的强度不会降低。在超过一定距离(约强子的大小)后,即使夸克之间距离多远,其强度仍有约10,000牛顿。在量子色动力学中这称为夸克禁闭,因此只观察的到由夸克组合成的强子,无法观察到单独存在的夸克。其解释是10,000牛顿的力(约是在地球表面一吨物质的重量),所做的功在短距离的作用下就可以足以产生夸克-反夸克对。简单来说,拉住二个夸克的力产生了一对新的夸克,这二个新的夸克和分别和原来的夸克形成夸克对。所有实验都无法找到自由夸克的结果也可以证实这种观点。基本夸克和胶子粒子的作用无法直接观测到,不过可以由粒子加速器中,当能量冲击夸克-夸克键结,或当质子中的夸克被另一个(在中子中)高速的夸克撞击时,产生的强子得知。任一个夸克和宇宙中大多数夸克的作用力都不会像以上所述,强度不随距离而减少,原因是因为夸克禁闭的影响,在一段距离以外只能看到成群的夸克,而成群夸克(即强子)的色荷会互相抵消,因此和几乎没有色荷相同。而强子和强子之间几乎没有强相互作用,但因为色荷的相消并不完全,会有残余的强相互作用,称为残余强相互作用,而残余强相互作用会随着距离而减少,因此在一定距离以外,其作用效果类似“无色荷”的重子,因此称为“强核力”也称为核力。残留强作用力的效果称为核力,核力会在强子之间作用,例如介子或原子核中的核子。残留强作用力会传递胶子,形成π介子及ρ介子的介子,这些介子会在核子之间传递核力。残留强作用力是将夸克束缚为质子及中子强作用力的残留量,因为质子和中子几乎是无色荷的,因此其作用力比束缚夸克的作用力小很多,就像中性原子之间的电磁力(范德瓦耳斯力)也比原子核和电子之间的电磁力小很多。残留强作用力和强作用力本身不同,强作用力不会距离增加而变小,但残留强作用力会随距离的增加而快速减小。其减小的趋势接近距离的负指数,不过没有简单的表示式(参照汤川势(英语:Yukawa potential))。因为上述事实,再加上质子之间的排斥力随距离不会那么快下降,造成了原子序数大于82(铅)所有原子核的不稳定。

相关

  • 查洛特–玛丽亚氏–齿病X1进行性神经性腓骨肌萎缩症,即(Charcot-Marie-Tooth disease、C-M-T,又称腓骨肌萎缩症、恰克-马利-杜斯氏症),是以三位最早发现此病的法国研究者的姓氏共同命名的。其主要表现是双
  • 壶菌门壶菌(英语:Chytridiomycota)是一类具有动孢子(英语:zoospore)的真菌。其名称来源于希腊文χυτρίδιον(chytridion),意思是“小壶”,因其产生动孢子的结构动孢子囊而得名。壶菌
  • 奥地利面积以下资讯是以2019年估计家用电源国家领袖国内生产总值(购买力平价) 以下资讯是以2016年估计国内生产总值(国际汇率) 以下资讯是以2016年估计人类发展指数 以下资讯是以2018
  • 艾滋病重估运动艾滋病重估运动(AIDS reappraisal movement ,或艾滋病异见组织,AIDS dissident movement)是一个由活跃份子、记者、市民、科学家、研究人员和医生组成的松散组织,他们对认为人类
  • 骨髓来源细胞人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学骨髓(英语:bone marrow)位于较大骨骼的腔
  • 生态负债日地球超载日(英语:Earth Overshoot Day,EOD),之前被称为是生态负债日(英语:Ecological Debt Day,EDD),指每年地球进入了生态赤字状态的日子,即是全球的生态足迹超越了地球可用的生物承载
  • 科尔萨科夫综合症科尔萨科夫氏症候群(Korsakoff's syndrome),又称健忘综合征,为一种大脑缺乏硫胺(维生素B1)而引起的精神障碍。其疾病由俄国神经学家谢尔盖·科尔萨科夫最先发现而命名。科尔萨科夫
  • 草药药用植物也被称为草药、药草,自史前时代以来一直在传统医学实践中被发现和使用。植物合成了数百种化合物,其功能包括植物抵抗昆虫,真菌,植物病害和食草哺乳动物。许多植物化学物
  • 核型核型(英语:Karyotype)是一种生物或细胞的染色体组成。用于核型分析。当细胞处于有丝分裂中期时,染色体排列在细胞赤道板,是观察它们的最好时机。对这些细胞染色,通过显微镜拍照获
  • 人类增强人体增强(英语:Human enhancement)是指那些希望通过自然或人工的手段暂时或永久的克服现在人体局限的尝试。这个术语有时适用于使用技术手段选择或改变人类的素质和能力,而不管