贝叶斯推理

✍ dations ◷ 2025-10-19 11:38:56 #贝叶斯推理
贝叶斯推断(英语:Bayesian inference)是推论统计的一种方法。这种方法使用贝叶斯定理,在有更多证据及信息时,更新特定假设的概率。贝叶斯推断是统计学(特别是数理统计学)中很重要的技巧之一。贝叶斯更新(Bayesian updating)在序列分析中格外的重要。贝叶斯推断应用在许多的领域中,包括科学、工程学、哲学、医学、体育运动、法律等。在决策论的哲学中,贝叶斯推断和主观概率有密切关系,常常称为贝叶斯概率。贝叶斯定理是由统计学家托马斯·贝斯(Thomas Bayes)根据许多特例推导而成,后来被许多研究者推广为一普遍的定理贝叶斯推断将后验概率(考虑相关证据或数据后,某一事件的条件几率)推导为二个前件、先验概率(考虑相关证据或数据前,某一事件不确定性的几率)及似然函数(由概率模型推导而得)的结果。贝叶斯推断根据贝叶斯定理计算后验概率:其中针对不同的 H {displaystyle textstyle H} 数值,只有 P ( H ) {displaystyle textstyle P(H)} 和 P ( E ∣ H ) {displaystyle textstyle P(Emid H)} (都在分子)会影响 P ( H ∣ E ) {displaystyle textstyle P(Hmid E)} 的数值。假说的后验概率和其先验概率(固有似然率)和新产生的似然率(假说和新得到证据的相容性)乘积成正比。贝叶斯定理也可以写成下式:其中系数 P ( E ∣ H ) P ( E ) {displaystyle textstyle {frac {P(Emid H)}{P(E)}}} 可以解释成 E {displaystyle E} 对 H {displaystyle H} 几率的影响。贝叶斯推断最关键的点是可以利用贝斯定理结合新的证据及以前的先验几率,来得到新的几率(这和频率学派推断相反,频率论推论只考虑证据,不考虑先验几率)。而且贝叶斯推断可以迭代使用:在观察一些证据后得到的后设几率可以当作新的先验几率,再根据新的证据得到新的后设几率。因此贝斯定理可以应用在许多不同的证据上,不论这些证据是一起出现或是不同时出现都可以,这个程序称为贝斯更新(Bayesian updating)。若用文字表示,即为“后验和先验及似然率的乘积成正比”,有时也会写成“后验 = 先验 × 似然率,在有证据的情形下”。贝叶斯推断有在人工智能及专家系统上应用。自1950年代后期开始,贝叶斯推断技巧就是电脑模式识别技术中的基础。现在也越来越多将贝叶斯推断和以模拟为基础的蒙地卡罗方法合并使用的应用,因为一些模杂的模型无法用贝叶斯分析得到解析解,因图模式结构可以配合一些快速的模拟方式(例如吉布斯抽样或是其他Metropolis–Hastings算法)。因为上述理由,贝叶斯推断在系统发生学研究社群中来越受到重视,许多的应用可以用同时估测许多人口和进化参数。“贝叶斯”是指托马斯·贝叶斯(1702–1761),他证明了一个特例(现在知道是贝叶斯定理的特例),不过皮埃尔-西蒙·拉普拉斯(1749–1827)推导了此定理的一般版本,应用在天体力学、医疗统计学、可靠度(英语:Reliability (statistics))及法学上。早期的贝叶斯推断是用拉普拉斯不充分理由原则(英语:principle of insufficient reason)所得的均匀先验,称为逆向几率(英语:inverse probability)(因为是由观测值倒推参数的归纳推理,或是从结果倒推到原因)。在1920年代以后,逆向几率很大程度的被另一群称为频率论统计(英语:frequentist statistics)的方式取代。二十世纪时,拉普拉斯的概念往下分支为二派,开始出现主观贝叶斯方法及客观贝叶斯方法。客观贝叶斯方法(或是不提供信息的贝叶斯方法)中,统计分析只依照假设的模型、分析的资料以及给定先验分布的方式(不同的客观贝叶斯方法会有不同给定先验分布的方式)。主观贝叶斯方法(或是提供信息的贝叶斯方法)中,先验的规格依信念(也是分析希望要呈现的主张)而定,信念可以由专家整理资讯后总结产生,也可以根据以往的研究等。1980年代发现了马尔科夫蒙特卡洛方法,让贝叶斯方法的研究及应用有大幅的发展,除去了许多运算上的问题,也有越来越多人愿意参与非标准的复杂问题。不过虽然贝叶斯方法的研究仍在成长,大部分大学本科的教学仍是以频率论统计(英语:frequentist statistics)为基础 。不过贝叶斯方法也广为许多领域接受及应用,例如在机器学习的领域中。

相关

  • 黏菌黏菌,或作黏液霉菌(Slime mold),是一种原生生物,分类学上的名称为“Myxomycota”的次门级分类单元,意思是“真菌动物”,这样的名称表现了其外观与生活型态。它们保有变形虫的身体构
  • 海绵多孔动物门(学名:Porifera)为原始的多细胞生物,也称海绵动物门(Spongiatia或Spongia),一般称为海绵。海绵没有神经元/神经系统、消化和循环系统,相反,它们大多依靠海水流过自己的身体
  • 放血放血是将人的血液放出,以治疗、预防或者诊断疾病的替代医学疗法。放血在西方和中东的理论基础是古代医学的体液学说系统。该系统认为如果体液在人体内失去平衡,则会导致疾病。
  • 交叉学科科际整合(英:Interdisciplinarity),或译交叉学科、学科间研究,指的是两个或多个学科相互合作,在同一个目标下进行的学术活动。科际整合的项目通常源于对单一学科无法、或是无意
  • 数字罗马数字是古罗马使用的记数系统,现今仍很常见。罗马数字共有7个,即I(1)、V(5)、X(10)、L(50)、C(100)、D(500)和M(1000)。按照下述的规则可以表示任意正整数。需要注意的是罗马数字中没有“
  • 黄斑部病变黄斑部退化(英语:Macular degeneration),也被称为老年性黄斑部病变(英语:age-related macular degeneration,簡寫為AMD或ARMD),会出现视力模糊(英语:blurred vision)或中央视野(英语:visua
  • 兰氏结兰氏结(英语:Nodes of Ranvier)又名郎氏结,郎飞氏结。是神经元的一部分,以首位描述该结构的法国科学家兰维尔(Louis-Antoine Ranvier)为名。神经元的髓鞘包覆着轴突,兰氏结是神经元
  • 仰韶文化、瓮等日用陶器渭河流域河南西部山西河北汉水中上游甘肃洮河流域河套地区仰韶文化是黄河中游地区重要的新石器时代文化,年代约为公元前5000年-公元前3000年前,分布在整个黄河中
  • 妹喜妺喜(?-?),有施氏,又作妺嬉、末喜、末嬉,喜姓,有施氏国君之女,夏朝第十七位君主桀的宠妃。根据《国语》记载,桀发动大军,攻打有施氏(今湖北省恩施市)。有施氏国君献出牛羊、马匹、美女,还有
  • 兄弟会与姐妹会兄弟会和姐妹会(英语:Fraternities and Sororities)通常以希腊字母命名,并一起通称希腊字母社团(Greek Letter Organizations, GLOs)。在拉丁语中,Frater和Soror分别代表“兄弟”(Br