首页 >
贝叶斯推理
✍ dations ◷ 2025-04-03 12:16:01 #贝叶斯推理
贝叶斯推断(英语:Bayesian inference)是推论统计的一种方法。这种方法使用贝叶斯定理,在有更多证据及信息时,更新特定假设的概率。贝叶斯推断是统计学(特别是数理统计学)中很重要的技巧之一。贝叶斯更新(Bayesian updating)在序列分析中格外的重要。贝叶斯推断应用在许多的领域中,包括科学、工程学、哲学、医学、体育运动、法律等。在决策论的哲学中,贝叶斯推断和主观概率有密切关系,常常称为贝叶斯概率。贝叶斯定理是由统计学家托马斯·贝斯(Thomas Bayes)根据许多特例推导而成,后来被许多研究者推广为一普遍的定理贝叶斯推断将后验概率(考虑相关证据或数据后,某一事件的条件几率)推导为二个前件、先验概率(考虑相关证据或数据前,某一事件不确定性的几率)及似然函数(由概率模型推导而得)的结果。贝叶斯推断根据贝叶斯定理计算后验概率:其中针对不同的
H
{displaystyle textstyle H}
数值,只有
P
(
H
)
{displaystyle textstyle P(H)}
和
P
(
E
∣
H
)
{displaystyle textstyle P(Emid H)}
(都在分子)会影响
P
(
H
∣
E
)
{displaystyle textstyle P(Hmid E)}
的数值。假说的后验概率和其先验概率(固有似然率)和新产生的似然率(假说和新得到证据的相容性)乘积成正比。贝叶斯定理也可以写成下式:其中系数
P
(
E
∣
H
)
P
(
E
)
{displaystyle textstyle {frac {P(Emid H)}{P(E)}}}
可以解释成
E
{displaystyle E}
对
H
{displaystyle H}
几率的影响。贝叶斯推断最关键的点是可以利用贝斯定理结合新的证据及以前的先验几率,来得到新的几率(这和频率学派推断相反,频率论推论只考虑证据,不考虑先验几率)。而且贝叶斯推断可以迭代使用:在观察一些证据后得到的后设几率可以当作新的先验几率,再根据新的证据得到新的后设几率。因此贝斯定理可以应用在许多不同的证据上,不论这些证据是一起出现或是不同时出现都可以,这个程序称为贝斯更新(Bayesian updating)。若用文字表示,即为“后验和先验及似然率的乘积成正比”,有时也会写成“后验 = 先验 × 似然率,在有证据的情形下”。贝叶斯推断有在人工智能及专家系统上应用。自1950年代后期开始,贝叶斯推断技巧就是电脑模式识别技术中的基础。现在也越来越多将贝叶斯推断和以模拟为基础的蒙地卡罗方法合并使用的应用,因为一些模杂的模型无法用贝叶斯分析得到解析解,因图模式结构可以配合一些快速的模拟方式(例如吉布斯抽样或是其他Metropolis–Hastings算法)。因为上述理由,贝叶斯推断在系统发生学研究社群中来越受到重视,许多的应用可以用同时估测许多人口和进化参数。“贝叶斯”是指托马斯·贝叶斯(1702–1761),他证明了一个特例(现在知道是贝叶斯定理的特例),不过皮埃尔-西蒙·拉普拉斯(1749–1827)推导了此定理的一般版本,应用在天体力学、医疗统计学、可靠度(英语:Reliability (statistics))及法学上。早期的贝叶斯推断是用拉普拉斯不充分理由原则(英语:principle of insufficient reason)所得的均匀先验,称为逆向几率(英语:inverse probability)(因为是由观测值倒推参数的归纳推理,或是从结果倒推到原因)。在1920年代以后,逆向几率很大程度的被另一群称为频率论统计(英语:frequentist statistics)的方式取代。二十世纪时,拉普拉斯的概念往下分支为二派,开始出现主观贝叶斯方法及客观贝叶斯方法。客观贝叶斯方法(或是不提供信息的贝叶斯方法)中,统计分析只依照假设的模型、分析的资料以及给定先验分布的方式(不同的客观贝叶斯方法会有不同给定先验分布的方式)。主观贝叶斯方法(或是提供信息的贝叶斯方法)中,先验的规格依信念(也是分析希望要呈现的主张)而定,信念可以由专家整理资讯后总结产生,也可以根据以往的研究等。1980年代发现了马尔科夫蒙特卡洛方法,让贝叶斯方法的研究及应用有大幅的发展,除去了许多运算上的问题,也有越来越多人愿意参与非标准的复杂问题。不过虽然贝叶斯方法的研究仍在成长,大部分大学本科的教学仍是以频率论统计(英语:frequentist statistics)为基础
。不过贝叶斯方法也广为许多领域接受及应用,例如在机器学习的领域中。
相关
- 肌苷肌苷(Inosine),也称为次黄苷、次黄嘌呤核苷等。是由次黄嘌呤于核糖结合而成的核苷类化合物。在嘌呤的从头合成(de novo synthesis)中,肌苷酸(IMP)可以作为合成腺苷酸(AMP)和鸟苷酸(GMP)
- 临时参议长议长:南希·裴洛西(民主党) 多数党领袖(英语:Party leaders of the United States House of Representatives):斯坦利·霍耶(民主党) 少数党领袖(英语:Party leaders of the United Sta
- 类血友病类血友病,温韦伯氏疾病(Von Willebrand disease,简称vWD)、血管性血友病,是人类最常见的遗传性凝血异常疾病,但是也可会在某些情况下得病。致病的原因是缺乏一种血小板凝聚所需要
- 鳞柄白毒鹅膏菌蕈伞凸面鳞柄白鹅膏(学名:Amanita virosa),又称毁灭天使、招魂天使、破坏天使 (Destroying Angel),是一个隶属于伞菌目鹅膏菌科鹅膏菌属下的有毒真菌种。其为中至大型的菇菌,全体
- 植被植被是地球表面所覆盖的植物的总称。它是一个植物学、生态学、农学和地球科学的名词。植被可以因为生长环境的不同而被分类,譬如高山植被、草原植被、海岛植被等。环境因素如
- 萨米埃尔·德尚普兰萨缪尔·德·尚普兰(法语:Samuel de Champlain,1574年8月13日-1635年12月25日)是法国探险家,地理学家,魁北克城的建立者。也是法国同北美贸易,特别是皮毛贸易的开拓者。尚普兰出生
- 毛笔毛笔,是一种源于中国的传统书写工具。有玉管、翠管等雅称,被列为中国的文房四宝之一。现今也有一些科学毛笔。1954年在长沙左公山15号战国中期楚墓中已有出土保存完好的毛笔。
- 迪德夫拉雷吉德夫(或名拉迪耶迪夫,Radjedef;约公元前2528年-约公元前2520年在位)是古埃及第四王朝法老,是胡夫的儿子,卡夫拉的同父异母兄弟。一般人认为他因谋杀了他的哥哥卡瓦布,原来的王位
- 阿蒙涅姆赫特一世阿蒙涅姆赫特一世或阿曼尼赫特一世(英语:Amenemhat I)(约公元前1991年—约公元前1962年在位)埃及法老。他是第十二王朝的建立者。阿蒙涅姆赫特一世不是王室成员出身,因而十分注
- 第三中间期第八第十第三中间时期,即古埃及自法老拉美西斯十一世于公元前1070年代死后,至普萨美提克一世于前664年驱逐第二十五王朝的努比亚统治者、创立第二十六王朝之前的一段时期。这