中微子退耦

✍ dations ◷ 2025-06-07 04:31:20 #中微子退耦
中微子退耦在大爆炸宇宙学中指中微子不再与重子物质相互作用,发生退耦之后,也不再影响宇宙早期动力学 。在退耦之前,中微子与质子、中子、电子达到热平衡,中微子与这些粒子之间有弱相互作用。退耦大约发生在弱相互作用减弱的速率慢于宇宙膨胀的速率的时刻,或者发生在弱相互作用的时间尺度比当时的宇宙年龄更大的时刻。中微子退耦大约发生在大爆炸发生之后1秒,宇宙温度大约为100亿开尔文,即1兆电子伏特。中微子与电子和正电子的相互作用抑制了中微子自由流,反应为e − + e + ⟷ ν e + ν ¯ e {displaystyle e^{-}+e^{+}longleftrightarrow nu _{e}+{bar {nu }}_{e}} .这一反应的速率近似由电子和正电子的数密度(英语:number density)决定,即反应的截面和粒子速度的积的平均值。相对论性的电子和正电子的数密度 n {displaystyle n} 与温度 T {displaystyle T} 成3次方关系,即 n ∝ T 3 {displaystyle npropto T^{3}} 。温度(能量)低于时 W/Z波色子质量(~100 GeV)时,弱相互作用的截面和速度的乘积近似为 ⟨ σ v ⟩ ∼ G F 2 T 2 {displaystyle langle sigma vrangle sim G_{F}^{2}T^{2}} ,其中 G F {displaystyle G_{F}} 为费米常数(按粒子物理里的标准做法,因子光速 c {displaystyle c} 定位1)。整理以上两个关系,得弱相互作用减弱速率 Γ {displaystyle Gamma } 为Γ = n ⟨ σ v ⟩ ∼ G F 2 T 5 {displaystyle Gamma =nlangle sigma vrangle sim G_{F}^{2}T^{5}} .宇宙膨胀速率由哈勃常数 H {displaystyle H} 表示,H = 8 π 3 G ρ {displaystyle H={sqrt {{frac {8pi }{3}}Grho }}} ,其中, G {displaystyle G} 为万有引力常数, ρ {displaystyle rho } 为宇宙的能量密度。此刻宇宙的能量密度主要由辐射能组成,即 ρ ∝ T 4 {displaystyle rho propto T^{4}} 。由以上两式可得,随着宇宙的冷却, 弱相互作用减弱速率比宇宙膨胀速率减小的更快。当两个速率大约相等时(不计数量级为1的项,包括等效简并度,即相互作用粒子的态的数目),可得中微子退耦时的近似温度满足 G F 2 T 5 ∼ G T 4 {displaystyle G_{F}^{2}T^{5}sim {sqrt {GT^{4}}}}即T ∼ ( G G F 2 ) 1 / 3 ∼ 1   MeV {displaystyle Tsim left({frac {sqrt {G}}{G_{F}^{2}}}right)^{1/3}sim 1~{textrm {MeV}}}尽管这是一个非常粗糙的推导,但给出了中微子退耦的主要物理现象。尽管中微子退耦无法直接观测,但这一现象会遗留下宇宙中微子背景辐射,如同大爆炸会遗留下宇宙微波背景。探测中微子背景辐射远超出现有的中微子探测器的精度范围。有数据间接显示中微子背景辐射是存在的。证据之一是宇宙微波背景的角功率谱的衰减,这可能是中微子背景的各向异性造成的。中微子退耦与质子与中子之比密切相关,这也提供一个非直接观测中微子退耦的可能方法。退耦之前,中子与质子的数目通过弱相互作用保持其平衡丰度之比,即通过β衰变n ↔ p + e − + ν ¯ e {displaystyle nleftrightarrow p+e^{-}+{bar {nu }}_{e}}及其逆反应电子俘获p + e − ↔ ν e + n {displaystyle p+e^{-}leftrightarrow nu _{e}+n}一旦弱相互作用减弱的速率低于宇宙膨胀的特征速率,这一平衡将无法维持,中子与质子丰度比固定为[ n n + p ] = 0.21 {displaystyle left=0.21} .此值可由退耦时刻中子和质子的玻尔兹曼因子算得,即由n n ( T ) n p ( T ) = exp ⁡ ( − Δ m T ) {displaystyle {frac {n_{n}(T)}{n_{p}(T)}}=exp left({frac {-Delta m}{T}}right)}算得,其中 Δ m {displaystyle Delta m} 为中子和质子的质量差, T {displaystyle T} 为退耦时的温度。这一比值对太初核合成期间原子的合成至关重要,因为这一比值是决定氦原子产量的决定性因素。宇宙中大部分氦原子在太初核合成期间形成。。因为氦原子非常稳定,中子被锁定其中,不再发生β衰变。因子中子的丰度一直保持到今天。天文学家可测得中子的丰度。氦的丰度是由中微子退耦时的中子与质子的数量比决定,因此可间接推知中微子退耦发生的温度,结果与以上推导相符。

相关

  • 草绿色链球菌草绿色链球菌(英文:Viridans streptococci ),是链球菌属底下的一群细菌,是人体重要的正常菌丛之一,主要分布于口腔、呼吸道,肠胃道、女性生殖道等部位。草绿色链球菌是感染性心内膜
  • 基克拉泽斯文明基克拉泽斯文明(或称为基克拉泽斯文化、基克拉泽斯时期)是爱琴海基克拉泽斯群岛上的一种早期青铜时代(Early Bronze Age)文化,他大致从公元前3300年延续到前2000年,考古发现上最早
  • 撷取信息抽取(Information Extraction,简称IE,又译信息截取技术)主要是从大量文字数据中自动抽取特定消息(Particular Information),以作为数据库访问(Database Access)之用的技术。信息
  • 乙酰乙酰基(英语:Acetyl),化学式为
  • 五旬宗五旬节运动(Pentecostalism)是20世纪初兴起的基督教新教运动。他们特别强调说方言(Speaking in tongues)是要领受圣灵的首个外显的凭据,根据《圣经》记载的公元33年的五旬节,早期
  • 袋棍球袋棍球(Lacrosse),又译长曲棍球、曲棍网球、棍网球、兜网球、袋球或网棒球,是一种使用顶端具有网状袋子的长棍作为持球工具的团队球类运动。起源于北美原住民部落,原本不限人数,最
  • 印度国民大会党印度国民大会党(印地语:भारतीय राष्ट्रीय कांग्रेस;英语:Indian National Congress),简称印度国大党或国大党,为印度历史最悠久的政党,也是印度两大主要政党
  • 亚历山大·费奥多罗维奇·克伦斯基亚历山大·费奥多罗维奇·克伦斯基(俄语:Алекса́ндр Фёдорович Ке́ренский,IPA:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL",
  • 鸟击鸟击,或称鸟撞、撞鸟,航空界俗称吸鸟。此指鸟类与飞行中的飞机、高速运行的火车、汽车等发生碰撞,造成意外的事件。飞机起飞和降落过程是最容易发生鸟击的阶段,超过90%的鸟击发
  • 书籍联合国教育、科学及文化组织统计各国每年的书籍出版数,并视其为生活和教育标准的一个重要指数。列表按降序排列,使用最近年份的数据。总计:约2,200,000