首页 >
中微子退耦
✍ dations ◷ 2024-12-22 22:30:03 #中微子退耦
中微子退耦在大爆炸宇宙学中指中微子不再与重子物质相互作用,发生退耦之后,也不再影响宇宙早期动力学 。在退耦之前,中微子与质子、中子、电子达到热平衡,中微子与这些粒子之间有弱相互作用。退耦大约发生在弱相互作用减弱的速率慢于宇宙膨胀的速率的时刻,或者发生在弱相互作用的时间尺度比当时的宇宙年龄更大的时刻。中微子退耦大约发生在大爆炸发生之后1秒,宇宙温度大约为100亿开尔文,即1兆电子伏特。中微子与电子和正电子的相互作用抑制了中微子自由流,反应为e
−
+
e
+
⟷
ν
e
+
ν
¯
e
{displaystyle e^{-}+e^{+}longleftrightarrow nu _{e}+{bar {nu }}_{e}}
.这一反应的速率近似由电子和正电子的数密度(英语:number density)决定,即反应的截面和粒子速度的积的平均值。相对论性的电子和正电子的数密度
n
{displaystyle n}
与温度
T
{displaystyle T}
成3次方关系,即
n
∝
T
3
{displaystyle npropto T^{3}}
。温度(能量)低于时 W/Z波色子质量(~100 GeV)时,弱相互作用的截面和速度的乘积近似为
⟨
σ
v
⟩
∼
G
F
2
T
2
{displaystyle langle sigma vrangle sim G_{F}^{2}T^{2}}
,其中
G
F
{displaystyle G_{F}}
为费米常数(按粒子物理里的标准做法,因子光速
c
{displaystyle c}
定位1)。整理以上两个关系,得弱相互作用减弱速率
Γ
{displaystyle Gamma }
为Γ
=
n
⟨
σ
v
⟩
∼
G
F
2
T
5
{displaystyle Gamma =nlangle sigma vrangle sim G_{F}^{2}T^{5}}
.宇宙膨胀速率由哈勃常数
H
{displaystyle H}
表示,H
=
8
π
3
G
ρ
{displaystyle H={sqrt {{frac {8pi }{3}}Grho }}}
,其中,
G
{displaystyle G}
为万有引力常数,
ρ
{displaystyle rho }
为宇宙的能量密度。此刻宇宙的能量密度主要由辐射能组成,即
ρ
∝
T
4
{displaystyle rho propto T^{4}}
。由以上两式可得,随着宇宙的冷却, 弱相互作用减弱速率比宇宙膨胀速率减小的更快。当两个速率大约相等时(不计数量级为1的项,包括等效简并度,即相互作用粒子的态的数目),可得中微子退耦时的近似温度满足
G
F
2
T
5
∼
G
T
4
{displaystyle G_{F}^{2}T^{5}sim {sqrt {GT^{4}}}}即T
∼
(
G
G
F
2
)
1
/
3
∼
1
MeV
{displaystyle Tsim left({frac {sqrt {G}}{G_{F}^{2}}}right)^{1/3}sim 1~{textrm {MeV}}}尽管这是一个非常粗糙的推导,但给出了中微子退耦的主要物理现象。尽管中微子退耦无法直接观测,但这一现象会遗留下宇宙中微子背景辐射,如同大爆炸会遗留下宇宙微波背景。探测中微子背景辐射远超出现有的中微子探测器的精度范围。有数据间接显示中微子背景辐射是存在的。证据之一是宇宙微波背景的角功率谱的衰减,这可能是中微子背景的各向异性造成的。中微子退耦与质子与中子之比密切相关,这也提供一个非直接观测中微子退耦的可能方法。退耦之前,中子与质子的数目通过弱相互作用保持其平衡丰度之比,即通过β衰变n
↔
p
+
e
−
+
ν
¯
e
{displaystyle nleftrightarrow p+e^{-}+{bar {nu }}_{e}}及其逆反应电子俘获p
+
e
−
↔
ν
e
+
n
{displaystyle p+e^{-}leftrightarrow nu _{e}+n}一旦弱相互作用减弱的速率低于宇宙膨胀的特征速率,这一平衡将无法维持,中子与质子丰度比固定为[
n
n
+
p
]
=
0.21
{displaystyle left=0.21}
.此值可由退耦时刻中子和质子的玻尔兹曼因子算得,即由n
n
(
T
)
n
p
(
T
)
=
exp
(
−
Δ
m
T
)
{displaystyle {frac {n_{n}(T)}{n_{p}(T)}}=exp left({frac {-Delta m}{T}}right)}算得,其中
Δ
m
{displaystyle Delta m}
为中子和质子的质量差,
T
{displaystyle T}
为退耦时的温度。这一比值对太初核合成期间原子的合成至关重要,因为这一比值是决定氦原子产量的决定性因素。宇宙中大部分氦原子在太初核合成期间形成。。因为氦原子非常稳定,中子被锁定其中,不再发生β衰变。因子中子的丰度一直保持到今天。天文学家可测得中子的丰度。氦的丰度是由中微子退耦时的中子与质子的数量比决定,因此可间接推知中微子退耦发生的温度,结果与以上推导相符。
相关
- 内皮内皮细胞或血管内皮是一薄层的专门上皮细胞,由一层扁平细胞所组成。它形成血管的内壁,是血管管腔内血液及其他血管壁(单层鳞状上皮)的界面。内皮细胞是沿着整个循环系统,由心脏直
- 骨骨骼是组成脊椎动物内骨骼的坚硬器官,功能是运动、支持和保护身体,及储藏矿物质。骨组织是一种密实的结缔组织。骨骼由各种不同的形状组成,有复杂的内在和外在结构,使骨骼在减轻
- 分裂原丝裂原(英语:Mitogen,又称促分裂原、促细胞分裂剂)是促进细胞开始分裂,触发有丝分裂的化学物质,通常是蛋白质形式。
- 抗忧郁剂抗抑郁药(英语:Anti-depressant),是一类治疗重度抑郁症(MDD)或其它问题如心境恶劣障碍、焦虑症、强迫症、进食障碍、慢性疼痛、神经性疼痛(英语:Neuropathic pain)的药物,在某些情况下
- 和名和名,依照字面上的意义是指日文中的名称,它除了可以指日文中的人名之外,更常见的场合是用来代替生物学、矿物学、物理学或化学等领域中一般民众难以辨识或记忆、将拉丁文以片假
- 功能性灭绝功能性灭绝(Functional extinction),是指一个物种或分类单元已达以下状况:在IUCN红色名录中,一个不再有最近观察纪录,已经功能性灭绝的物种,除非真的确定最后一只个体已死亡,否则会
- 遗传系谱学遗传系谱学或称遗传家谱学(英语:genetic genealogy)是应用遗传学来研究传统的家谱学。利用DNA的分析,建立出个体之间的系谱关系。可用于追溯母系或父系祖先、民族起源、生物地理
- 不对称诱导不对称诱导,是立体化学名词,指在一个富手性的反应剂、化学试剂、催化物或环境的作用下,一个化学反应中的产物尽于某一种对映异构体或非对映异构体多于另一种。不对称诱导是不对
- 轻轨列车高雄捷运环状轻轨CAF Urbos 3电联车是指在高雄捷运环状轻轨上营运的动力分散式电联车,在全线完工时总数预定达到24列。第一阶段九列列车为西班牙CAF公司Urbos 3系列车辆,首列
- 阴茎根阴茎根在外形上从中间分为三部分,包括在两侧的阴茎脚,以及在中间的阴茎球(英语:Bulb of penis)。阴茎脚是由坐骨海绵体肌(英语:Ischiocavernosus muscle)包覆,而尿道球是由球海绵体肌