估计量的偏差

✍ dations ◷ 2025-07-19 07:59:32 #统计理论,估计理论,认知偏误

在统计学中,估计量的偏差(或偏差函数)是此估计量的期望值与估计参数的真值之差。偏差为零的估计量或决策规则称为无偏的。否则该估计量是有偏的。在统计中,“偏差”是一个函数的客观陈述。

偏差也可以相对于中位数来衡量,而非相对于均值(期望值),在这种情况下为了与通常的“均值”无偏性区别,称作“中值”无偏。偏差与一致性相关联,一致估计量都是收敛并且无偏的(因此会收敛到正确的值),虽然一致序列中的个别估计量可能是有偏的(只要偏差收敛于零);参见偏差与一致性。

当其他量相等时,无偏估计量比有偏估计量更好一些,但在实践中,并不是所有其他统计量的都相等,于是也经常使用有偏估计量,一般偏差较小。当使用一个有偏估计量时,也会估计它的偏差。有偏估计量可能用于以下原因:由于如果不对总体进一步假设,无偏估计量不存在或很难计算(如标准差的无偏估计(英语:unbiased estimation of standard deviation));由于估计量是中值无偏的,却不是均值无偏的(或反之);由于一个有偏估计量较之无偏估计量(特别是收缩估计量(英语:shrinkage estimator))可以减小一些损失函数(尤其是均方差);或者由于在某些情况下,无偏的条件太强,而这些无偏估计量没有太大用处。此外,在非线性变换下均值无偏性不会保留,不过中值无偏性会保留(参见变换的效应);例如样本方差是总体方差的无偏估计量,但它的平方根标准差则是总体标准差的有偏估计量。下面会进行说明。

设我们有一个参数为实数 的概率模型,产生观测数据的概率分布 P θ ( x ) = P ( x θ ) {\displaystyle P_{\theta }(x)=P(x\mid \theta )} 的估计量。也就是说,我们假定我们的数据符合某种未知分布 P θ ( x ) = P ( x θ ) {\displaystyle P_{\theta }(x)=P(x\mid \theta )} 是一个固定常数,而且是该分布的一部分,但具体值未知),于是我们构造估计量 θ ^ {\displaystyle {\hat {\theta }}} 的值对应起来。因此这个估量的(相对于参数 的)偏差定义为

其中 E θ {\displaystyle \operatorname {E} _{\theta }} 对于条件分布 P ( x θ ) {\displaystyle P(x\mid \theta )} 的所有值的偏差都等于零的估计量称为无偏估计量。

在一次关于估计量性质的模拟实验中,估计量的偏差可以用平均有符号离差(英语:mean signed difference)来评估。

随机变量的样本方差从两方面说明了估计量偏差:首先,自然估计量(naive estimator)是有偏的,可以通过比例因子校正;其次,无偏估计量的均方差(MSE)不是最优的,可以用一个不同的比例因子来最小化,得到一个比无偏估计量的MSE更小的有偏估计量。

具体地说,自然估计量就是将离差平方和加起来然后除以 ,是有偏的。不过除以  − 1 会得到一个无偏估计量。相反,MSE可以通过除以另一个数来最小化(取决于分布),但这会得到一个有偏估计量。这个数总会比  − 1 大,所以这就叫做收缩估计量(英语:shrinkage estimator),因为它把无偏估计量向零“收缩”;对于正态分布,最佳值为  + 1。

1, ..., 是期望为 、方差为 2 的独立同分布(i.i.d.)随机变量。如果样本均值与未修正样本方差定义为

则 2 是 2 的一个有偏估计量,因为

换句话说,未修正的样本方差的期望值不等于总体方差 2,除非乘以归一化因子。而样本均值是总体均值 的无偏估计量。

2 是有偏的原因源于样本均值是 的普通最小二乘(英语:ordinary least squares)(OLS)估计量这个事实: X ¯ {\displaystyle {\overline {X}}} 是令 i = 1 n ( X i X ¯ ) 2 {\displaystyle \sum _{i=1}^{n}(X_{i}-{\overline {X}})^{2}} 尽可能小的数。也就是说,当任何其他数代入这个求和中时,这个和只会增加。尤其是,在选取 μ X ¯ {\displaystyle \mu \neq {\overline {X}}} 就会得出,

于是

注意到,通常的样本方差定义为

而这时总体方差的无偏估计量。可以由下式看出:

方差的有偏(未修正)与无偏估计之比称为贝塞尔修正(英语:Bessel's correction)。

相关

  • 乳癌乳腺癌是由乳房组织发展成的癌症。乳腺癌的征象包括乳房肿块、乳房形状改变、皮肤凹陷、乳头分泌物或是皮肤出现红色鳞屑状斑块。而出现远端转移的病患,可能会有骨痛(英语:Bone
  • 头癣(外语favus, tinea capitis, ringworm of the scalp)是皮肤细菌疾病,由真菌引起,有可能引发其它疾病。三种主要的真菌是:小孢癣菌、表皮癣菌和毛癣菌属。头癣可能出现于各部
  • 温布尔登网球公开赛温布尔登网球锦标赛(英语:The Championships, Wimbledon)是网球运动中历史最长和最具声望的公开赛。锦标赛通常举办于6月底至7月初,是每年度网球大满贯的第3项赛事,排在澳大利亚
  • 宝石学宝石学是鉴定宝石的一门科学,属于矿物学的一个分支,是宝石行业的理论基础。许多国家的职业学校都有这门专业。有的宝石学家有专门研究的领域,如专门研究钻石的,专门研究祖母绿的
  • 驰龙驰龙属(属名:Dromaeosaurus)又名奔龙, 是一类兽脚亚目恐龙,生活于上白垩纪坎帕阶的加拿大阿尔伯塔省与美国西部,约7,600万到7,200万年前。驰龙是种小型肉食性恐龙,大小如狼,身长约1.
  • 龙虾科龙虾科(学名:Palinuridae)是甲壳亚门十足目抱卵亚目无螯下目中的一个科,它有约45个种。与龙虾科最接近的是蝉虾科,两者同属无螯下目。属于龙虾科的属包括真龙虾属、岩龙虾属、脊
  • 肌肉收缩肌肉伸缩(英语:Muscle contraction)是通过肌动蛋白和肌球蛋白共同完成的。当突触发生动作电位的时候,钙离子就会进入肌肉,肌肉通过三磷酸腺苷(ATP)产生能量从而扭曲肌肉纤维,因此导
  • 中华人民共和国全国人口普查中国最早的一次人口普查在西汉汉平帝元始二年(公元2年)进行,数据为12,366,470户,57,671,401人。但由于历史文献资料离现在很远,不很完善。中华人民共和国建国以来一共进行过六次
  • 妮诺奇嘉妮诺奇嘉()是1939年美国的一部电影。由美高梅公司制作。制作人和导演是恩斯特·刘别谦,主演是葛丽泰·嘉宝和梅尔文·道格拉斯。这是一部嘲讽苏联的喜剧电影,也是葛丽泰·嘉宝首
  • 布施瑟山坐标:47°29′16.16″N 10°26′25.28″E / 47.4878222°N 10.4403556°E / 47.4878222; 10.4403556布施瑟山(德语:Bschießer),是中欧的山峰,位于奥地利和德国接壤的边境,属于阿尔