估计量的偏差

✍ dations ◷ 2025-04-03 17:29:20 #统计理论,估计理论,认知偏误

在统计学中,估计量的偏差(或偏差函数)是此估计量的期望值与估计参数的真值之差。偏差为零的估计量或决策规则称为无偏的。否则该估计量是有偏的。在统计中,“偏差”是一个函数的客观陈述。

偏差也可以相对于中位数来衡量,而非相对于均值(期望值),在这种情况下为了与通常的“均值”无偏性区别,称作“中值”无偏。偏差与一致性相关联,一致估计量都是收敛并且无偏的(因此会收敛到正确的值),虽然一致序列中的个别估计量可能是有偏的(只要偏差收敛于零);参见偏差与一致性。

当其他量相等时,无偏估计量比有偏估计量更好一些,但在实践中,并不是所有其他统计量的都相等,于是也经常使用有偏估计量,一般偏差较小。当使用一个有偏估计量时,也会估计它的偏差。有偏估计量可能用于以下原因:由于如果不对总体进一步假设,无偏估计量不存在或很难计算(如标准差的无偏估计(英语:unbiased estimation of standard deviation));由于估计量是中值无偏的,却不是均值无偏的(或反之);由于一个有偏估计量较之无偏估计量(特别是收缩估计量(英语:shrinkage estimator))可以减小一些损失函数(尤其是均方差);或者由于在某些情况下,无偏的条件太强,而这些无偏估计量没有太大用处。此外,在非线性变换下均值无偏性不会保留,不过中值无偏性会保留(参见变换的效应);例如样本方差是总体方差的无偏估计量,但它的平方根标准差则是总体标准差的有偏估计量。下面会进行说明。

设我们有一个参数为实数 的概率模型,产生观测数据的概率分布 P θ ( x ) = P ( x θ ) {\displaystyle P_{\theta }(x)=P(x\mid \theta )} 的估计量。也就是说,我们假定我们的数据符合某种未知分布 P θ ( x ) = P ( x θ ) {\displaystyle P_{\theta }(x)=P(x\mid \theta )} 是一个固定常数,而且是该分布的一部分,但具体值未知),于是我们构造估计量 θ ^ {\displaystyle {\hat {\theta }}} 的值对应起来。因此这个估量的(相对于参数 的)偏差定义为

其中 E θ {\displaystyle \operatorname {E} _{\theta }} 对于条件分布 P ( x θ ) {\displaystyle P(x\mid \theta )} 的所有值的偏差都等于零的估计量称为无偏估计量。

在一次关于估计量性质的模拟实验中,估计量的偏差可以用平均有符号离差(英语:mean signed difference)来评估。

随机变量的样本方差从两方面说明了估计量偏差:首先,自然估计量(naive estimator)是有偏的,可以通过比例因子校正;其次,无偏估计量的均方差(MSE)不是最优的,可以用一个不同的比例因子来最小化,得到一个比无偏估计量的MSE更小的有偏估计量。

具体地说,自然估计量就是将离差平方和加起来然后除以 ,是有偏的。不过除以  − 1 会得到一个无偏估计量。相反,MSE可以通过除以另一个数来最小化(取决于分布),但这会得到一个有偏估计量。这个数总会比  − 1 大,所以这就叫做收缩估计量(英语:shrinkage estimator),因为它把无偏估计量向零“收缩”;对于正态分布,最佳值为  + 1。

1, ..., 是期望为 、方差为 2 的独立同分布(i.i.d.)随机变量。如果样本均值与未修正样本方差定义为

则 2 是 2 的一个有偏估计量,因为

换句话说,未修正的样本方差的期望值不等于总体方差 2,除非乘以归一化因子。而样本均值是总体均值 的无偏估计量。

2 是有偏的原因源于样本均值是 的普通最小二乘(英语:ordinary least squares)(OLS)估计量这个事实: X ¯ {\displaystyle {\overline {X}}} 是令 i = 1 n ( X i X ¯ ) 2 {\displaystyle \sum _{i=1}^{n}(X_{i}-{\overline {X}})^{2}} 尽可能小的数。也就是说,当任何其他数代入这个求和中时,这个和只会增加。尤其是,在选取 μ X ¯ {\displaystyle \mu \neq {\overline {X}}} 就会得出,

于是

注意到,通常的样本方差定义为

而这时总体方差的无偏估计量。可以由下式看出:

方差的有偏(未修正)与无偏估计之比称为贝塞尔修正(英语:Bessel's correction)。

相关

  • 合成词合成词(compound),亦称复合词,英语语法上的直接翻译过来的名词,指的是由两个或以上的英语单词构成的英语词。例如英语词today、ice cream等,本由两英语单词合并而成。 [汉语] 合成词
  • 氯甲烷一氯甲烷又称甲基氯,无色、可燃、有毒气体,属有机卤化物。分子式是CH3Cl,分子量是50.49。主要用于生产甲基氯硅烷、聚硅酮、四甲基铅(汽油抗爆剂)、甲基纤维素。少量用于生产季
  • 微处理器印刷电路板通过:微处理器(英语:Microprocessor,缩写:µP或uP)是可编程特殊集成电路。一种处理器,其所有组件小型化至一块或数块集成电路内。一种集成电路,可在其一端或多端接受编码
  • 冯·卡门环形山冯·卡门环形山(Von Kármán)是月球背面南半部一座巨大的古撞击坑,约形成于45.5-39.2亿年前的前酒海纪,其名称取自匈牙利裔美籍工程师暨物理学家“西奥多·冯·卡门”(1881年-19
  • ħ清咽擦音是辅音的一种,用于一些语言的口语中。它在国际音标中的符号是⟨ħ⟩,在X-SAMPA中的符号则是⟨X\⟩。清咽擦音的特点有:该音是闪米特字母 hēth(希伯来字母:ח,阿拉伯字母:ﺣ,
  • 西吉贝尔特一世西吉贝尔特一世(法语:Sigebert I)是墨洛温王朝的法兰克国王(561年—575年在位),西吉贝尔特一世统治兰斯及梅斯。西吉贝尔特一世是法兰克国王克洛泰尔一世及他的首任妻子英贡德(英语
  • 漳州 (古代)漳州(闽南语:Chiang-chiu)是中国古代的州,于今日的福建省境内。唐朝垂拱二年(686年)分福州西南境置,《元和郡县志》:漳州“因漳水为名”。设置漳浦、怀恩二县,治所在漳浦县(今福建省云
  • 赤城元町赤城元町(日语:赤城元町/あかぎもとまち  */?)是东京都新宿区的町名,不设丁番。2013年8月1日为止的人口有449人。邮递区号为162-0817。位于新宿区东北部。北临筑地町与西五轩町
  • 宁远小檗宁远小檗(学名:)为小檗科小檗属下的一个种。
  • 玛纳卡玛纳庙玛纳卡玛纳庙(天城文尼泊尔语:मनकामना मन्दिर,拉丁文转写:Manakamana Mandir),位于尼泊尔甘达基专区廓尔喀县,是一座印度教寺庙。该寺庙主供巴格瓦蒂(雪山女神帕尔瓦蒂