估计量的偏差

✍ dations ◷ 2025-04-03 09:00:34 #统计理论,估计理论,认知偏误

在统计学中,估计量的偏差(或偏差函数)是此估计量的期望值与估计参数的真值之差。偏差为零的估计量或决策规则称为无偏的。否则该估计量是有偏的。在统计中,“偏差”是一个函数的客观陈述。

偏差也可以相对于中位数来衡量,而非相对于均值(期望值),在这种情况下为了与通常的“均值”无偏性区别,称作“中值”无偏。偏差与一致性相关联,一致估计量都是收敛并且无偏的(因此会收敛到正确的值),虽然一致序列中的个别估计量可能是有偏的(只要偏差收敛于零);参见偏差与一致性。

当其他量相等时,无偏估计量比有偏估计量更好一些,但在实践中,并不是所有其他统计量的都相等,于是也经常使用有偏估计量,一般偏差较小。当使用一个有偏估计量时,也会估计它的偏差。有偏估计量可能用于以下原因:由于如果不对总体进一步假设,无偏估计量不存在或很难计算(如标准差的无偏估计(英语:unbiased estimation of standard deviation));由于估计量是中值无偏的,却不是均值无偏的(或反之);由于一个有偏估计量较之无偏估计量(特别是收缩估计量(英语:shrinkage estimator))可以减小一些损失函数(尤其是均方差);或者由于在某些情况下,无偏的条件太强,而这些无偏估计量没有太大用处。此外,在非线性变换下均值无偏性不会保留,不过中值无偏性会保留(参见变换的效应);例如样本方差是总体方差的无偏估计量,但它的平方根标准差则是总体标准差的有偏估计量。下面会进行说明。

设我们有一个参数为实数 的概率模型,产生观测数据的概率分布 P θ ( x ) = P ( x θ ) {\displaystyle P_{\theta }(x)=P(x\mid \theta )} 的估计量。也就是说,我们假定我们的数据符合某种未知分布 P θ ( x ) = P ( x θ ) {\displaystyle P_{\theta }(x)=P(x\mid \theta )} 是一个固定常数,而且是该分布的一部分,但具体值未知),于是我们构造估计量 θ ^ {\displaystyle {\hat {\theta }}} 的值对应起来。因此这个估量的(相对于参数 的)偏差定义为

其中 E θ {\displaystyle \operatorname {E} _{\theta }} 对于条件分布 P ( x θ ) {\displaystyle P(x\mid \theta )} 的所有值的偏差都等于零的估计量称为无偏估计量。

在一次关于估计量性质的模拟实验中,估计量的偏差可以用平均有符号离差(英语:mean signed difference)来评估。

随机变量的样本方差从两方面说明了估计量偏差:首先,自然估计量(naive estimator)是有偏的,可以通过比例因子校正;其次,无偏估计量的均方差(MSE)不是最优的,可以用一个不同的比例因子来最小化,得到一个比无偏估计量的MSE更小的有偏估计量。

具体地说,自然估计量就是将离差平方和加起来然后除以 ,是有偏的。不过除以  − 1 会得到一个无偏估计量。相反,MSE可以通过除以另一个数来最小化(取决于分布),但这会得到一个有偏估计量。这个数总会比  − 1 大,所以这就叫做收缩估计量(英语:shrinkage estimator),因为它把无偏估计量向零“收缩”;对于正态分布,最佳值为  + 1。

1, ..., 是期望为 、方差为 2 的独立同分布(i.i.d.)随机变量。如果样本均值与未修正样本方差定义为

则 2 是 2 的一个有偏估计量,因为

换句话说,未修正的样本方差的期望值不等于总体方差 2,除非乘以归一化因子。而样本均值是总体均值 的无偏估计量。

2 是有偏的原因源于样本均值是 的普通最小二乘(英语:ordinary least squares)(OLS)估计量这个事实: X ¯ {\displaystyle {\overline {X}}} 是令 i = 1 n ( X i X ¯ ) 2 {\displaystyle \sum _{i=1}^{n}(X_{i}-{\overline {X}})^{2}} 尽可能小的数。也就是说,当任何其他数代入这个求和中时,这个和只会增加。尤其是,在选取 μ X ¯ {\displaystyle \mu \neq {\overline {X}}} 就会得出,

于是

注意到,通常的样本方差定义为

而这时总体方差的无偏估计量。可以由下式看出:

方差的有偏(未修正)与无偏估计之比称为贝塞尔修正(英语:Bessel's correction)。

相关

  • 临床医学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学临床医学(英语:Clinical Medicine)主要是
  • 谵妄.mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
  • 分解作用分解作用,又称腐烂、腐败,是指动物蛋白质及其有关之有机物分解成无机物,而且回到大自然物质循环的过程,特别是由缺氧微生物和腐化细菌。分解是一个大自然经常进行且非常重要的过
  • 瓦尔纳official_name Zabr 人瓦尔纳(保加利亚语:Варна)位于黑海西岸,是保加利亚第三大城市,人口351,552(2006年)。是该国重要的港口、保加利亚海军的基地,著名的海岸旅游城
  • 列奥那多·达·芬奇列奥纳多·达·芬奇(意大利语:Leonardo da Vinci;儒略历1452年4月15日-1519年5月2日),又译达文西,全名列奥纳多·迪·瑟皮耶罗·达·芬奇(Leonardo di ser Piero da Vinci,意为“芬奇
  • 阴蒂包皮阴蒂包皮是女性生殖器官的一部分,是在包裹阴蒂头的一层皮肤,也是小阴唇的一部分,和男性生殖器官中在龟头外围的包皮是同源组织。阴蒂包皮的功用是保护阴蒂头,其形状及大小会因人
  • 海蕾纲隙管海蕾目 Fissiculata 喷管海蕾目 Spiraculata 地位未定: †Macurdablastus海蕾(blastoids)是一类已灭绝的棘皮动物。多为梨形,有茎和腕羽,萼部较小。它们用很薄的茎节附着在基
  • 复合十二面体二十面体|240px|复合十二面体二十面体]] (点选检视旋转模型)在几何学中,复合十二面体二十面体(英语:Compound of dodecahedron and icosahedron)是一种凹多面体,属于星形多面体,结构为正二
  • 阮令嬴阮令嬴(477年-543年),为中国南齐、南梁时代人物。出身会稽余姚人。先后曾嫁给南齐始安王萧遥光、南齐废帝萧宝卷、南梁武帝萧衍等等。阮令嬴原姓石氏,父亲石灵宝,母亲陈氏。石令嬴
  • 卡拉乔杰维奇王朝卡拉乔杰维奇王朝(塞尔维亚语:Карађорђевићи、英语:Karađorđević)是近代塞尔维亚王国、南斯拉夫王国的王室,源自卡拉乔杰的家系。卡拉乔杰维奇也译为卡拉乔治维