高斯磁定律

✍ dations ◷ 2025-07-24 13:25:01 #卡尔·弗里德里希·高斯,静磁学,电磁学

在电磁学里,高斯磁定律阐明,磁场的散度等于零。因此,磁场是一个螺线矢量场。从这事实,可以推断磁单极子不存在。磁的基本实体是磁偶极子,而不是磁荷。当然,假若将来科学家发现有磁单极子存在,那么,这定律就必须做适当的修改,如稍后论述。高斯磁定律是因德国物理学者卡尔·高斯而命名。

在物理学界,很多学者使用“高斯磁定律”来指称这定律,但并不是每一位学者都采用这名字。有些作者称它为“自由磁单极子缺失”,或明确地表示这定律没有取名字。还有些作者称此定律为“横向性要求”,因为在真空中或线性介质中传播的电磁波必须是横波。

高斯磁定律的方程可以写为两种形式:微分形式和积分形式。根据散度定理,这两种形式为等价的。

高斯磁定律的微分形式为

其中, B {\displaystyle \mathbf {B} \,\!} 是磁场。

这是麦克斯韦方程组中的一个方程。

高斯磁定律的积分形式为

{\displaystyle \oiint } \oiint S {\displaystyle {\mathbb {S} }} B d s = 0 {\displaystyle \mathbf {B} \cdot {\rm {d}}\mathbf {s} =0}

其中, S {\displaystyle \mathbb {S} \,\!} 是一个闭曲面, d s {\displaystyle \mathrm {d} \mathbf {s} \,\!} 是微小面积分(请参阅曲面积分)。

这方程的左手边项目,称为通过闭曲面的净磁通量。高斯磁定律阐明这净磁通量永远等于零。

根据亥姆霍兹分解(Helmholtz decomposition),因为磁场的散度等于零,必定存在有矢量场 A {\displaystyle \mathbf {A} \,\!} 满足条件

这矢量场 A {\displaystyle \mathbf {A} \,\!} 称为磁矢势。

请注意并不是只有一个矢量场 A {\displaystyle \mathbf {A} \,\!} 满足这条件。实际上,有无限多个解答。应用一项矢量恒等式,

给予任意函数 ϕ {\displaystyle \phi \,\!} ,那么, A = A + ϕ {\displaystyle \mathbb {A} =\mathbf {A} +\nabla \phi \,\!} 也是一个解答。磁矢势的这种特性,称为规范自由。

磁场,就像任何矢量场,可以用场线来描绘其轨迹。磁场线是一组曲线,其方向对应于磁场的方向,其面密度与磁场的大小成正比。因为磁场的散度等于零,磁场线没有初始点,也没有终结点。磁场线或者形成一个闭循环,或者两个端点都延伸至无穷远。

假若,有科学家发现磁单极子存在于宇宙,则高斯磁定律不正确,必须修正。磁场的散度会与磁荷密度 ρ m {\displaystyle \rho _{m}\,\!} 成正比:

其中, μ 0 {\displaystyle \mu _{0}\,\!} 是磁常数。

从毕奥-萨伐尔定律,可以推导出高斯磁定律。毕奥-萨伐尔定律阐明,设定电流密度 J ( r ) {\displaystyle \mathbf {J} (\mathbf {r} ')\,\!} ,则磁场为

其中, r {\displaystyle \mathbf {r} '\,\!} 是源位置, r {\displaystyle \mathbf {r} \,\!} 是场位置, V {\displaystyle \mathbb {V} '\,\!} 是积分的体积, d 3 r {\displaystyle d^{3}r'\,\!} 是微小体积元素。

应用一项矢量恒等式,

将这恒等式带入毕奥-萨伐尔方程。由于梯度只作用于无单撇号的坐标,可以移到积分外,改为旋度:

应用一项矢量恒等式,

所以,高斯磁定律成立:

相关

  • 专门立法许多国家政府制定语言政策来鼓励或压抑民众对某一特定语言的使用。虽然国家经常透过语言政策的制定来推行官方语言,但亦有许多国家借助语言政策来保护地区性语言或濒危语言。
  • 阿卜杜拉赫曼·瓦希德阿卜杜拉赫曼·瓦希德(印尼语:Abdurrahman Wahid( 读音 帮助·信息,1940年9月7日-2009年12月30日),华语姓氏陈 印度尼西亚政治家,盲人政治家,民族觉醒党创立者,曾任印度尼西亚总统(199
  • 娘子妻,是男女婚姻中对女性配偶的称谓,与夫相对应。台湾话中将妻子雅称为牵手,清国初年台湾文献记载台湾原住民族、平埔人称妻为牵手,后受台湾不同族群广泛使用,向外人谦称自己配偶;而
  • 暖温带温带(英语:Temperate climate、德语:Gemäßigte Zone、法语:Climat tempéré),在地理学上,是位于热带和极圈之间的气候带。北半球温带区的范围是从北纬23.5°的北回归线到北纬66.
  • 轮耕农业轮耕是耕种的形式,是指在某块土地耕种一段时间,其肥力下降后,即将之荒废(休耕),改为耕种其他土地;待原来土地肥力回升后,再重新耕种;类似游牧民族的“逐水草而居”制度。轮耕通常在发
  • 三角尺三角尺是绘图工具之一,又称三角板,外观上呈直角三角形,与直尺共用可用于绘画直角、平行线及垂直线。传统的三角尺以木制居多,现代的三角尺则多以透明塑料制成,中心处开孔,亦多与圆
  • 泡沫反转录病毒亚科泡沫反转录病毒亚科(Spumaretrovirinae),又译作泡沫逆转录病毒亚科是反转录病毒科底下的一个亚科。下有一属:明称来源: Spuma:从拉丁文spuma,泡沫;灭火泡沫;(马等的)大汗(foam) 病
  • ATC代码 (D08)(Antifungals for dermatological use)(Emollients and protectives)(Preparations for treatment of wounds and ulcers)(Antipruritics, including antihistamines, anesthetics,
  • ayumi hamasaki ARENA TOUR 2012 A ~HOTEL Love songs~《ayumi hamasaki ARENA TOUR 2012 A ~HOTEL Love songs~》(滨崎步 2012 巡回演唱会 A ~HOTEL Love songs~)是日本歌手滨崎步于2012年间举行日本巡回演唱会,于2013年3月8日发行DVD
  • 司马江汉司马江汉(日语:司馬江漢,1747年-1818年11月19日),日本江户时代学者与艺术家。出生于今日本本州岛中部的东京,本名安藤峻。凭借其西式手法作画而闻名于世。他多年致力于绘画技巧的创