变分法

✍ dations ◷ 2025-08-13 21:31:32 #数学分析,变分法,最优化

变分法是处理泛函的数学领域,和处理函数的普通微积分相对。譬如,这样的泛函可以通过未知函数的积分和它的导数来构造。变分法最终寻求的是极值函数:它们使得泛函取得极大或极小值。有些曲线上的经典问题采用这种形式表达:一个例子是最速降线,在重力作用下一个粒子沿着该路径可以在最短时间从点A到达不直接在它底下的一点B。在所有从A到B的曲线中必须极小化代表下降时间的表达式。

变分法的关键定理是欧拉-拉格朗日方程。它对应于泛函的临界点。在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。它不能分辨是找到了最大值或者最小值(或者都不是)。

变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用量原理在量子力学的应用中。变分法提供了有限元方法的数学基础,它是求解边界值问题的强力工具。它们也在材料学中研究材料平衡中大量使用。而在纯数学中的例子有,黎曼在调和函数中使用狄利克雷原理。

同样的材料可以出现在不同的标题中,例如希尔伯特空间技术,莫尔斯理论,或者辛几何。变分一词用于所有极值泛函问题。微分几何中的测地线的研究是很显然的变分性质的领域。极小曲面(肥皂泡)上也有很多研究工作,称为普拉托问题。

变分法可能是从约翰·伯努利(1696)提出最速曲线(brachistochrone curve)问题开始出现的。它立即引起了雅各布·伯努利和洛必达(Marquis de l'Hôpital)的注意。但欧拉首先详尽的阐述了这个问题。他的贡献始于1733年,他的《变分原理》(Elementa Calculi Variationum)寄予了这门科学这个名字。欧拉对这个理论的贡献非常大。

勒让德(1786)确定了一种方法,但在对极大和极小的区别不完全令人满意。牛顿和莱布尼茨也是在早期关注这一学科,对于这两者的区别Vincenzo Brunacci(1810)、高斯(1829)、泊松(1831)、Mikhail Ostrogradsky(1834)、和雅可比(1837)都曾做出过贡献。Sarrus(1842)的由柯西(1844)浓缩和修改的是一个重要的具有一般性的成就。Strauch(1849)、Jellett(1850)、Otto Hesse(1857)、Alfred Clebsch(1858)、和Carll(1885)写了一些其他有价值的论文和研究报告,但可能那个世纪最重要的成果是Weierstrass所取得的。他关于这个理论的著名教材是划时代的,并且他可能是第一个将变分法置于一个稳固而不容置疑的基础上的。1900年希尔伯特发表的23个问题中的第20和23个问题促进了其更深远的发展。

在20世纪希尔伯特、埃米·诺特、Leonida Tonelli、昂利·勒贝格和雅克·阿达马等人做出重要贡献。Marston Morse将变分法应用在莫尔斯理论中。Lev Pontryagin、Ralph Rockafellar和Clarke广义变分法最优控制理论发展了新的数学工具。

在理想情形下,一函数的极大值及极小值会出现在其导数为 0 {\displaystyle 0} 需有二阶连续的导函数。在这种情形下,拉格朗日量L在极值 f 0 {\displaystyle f_{0}} <0或>0的区域,欧拉-拉格朗日方程均和以上描述的相同。因为折射率在二个区域均为定值,在二个区域光都以直线前进。而在=0的位置,必须连续,不过可以不连续。在上述二个区域用分部积分的方式解欧拉-拉格朗日方程,则其变分量为

n {\displaystyle n_{-}} 为其参数, X ( t ) {\displaystyle X(t)} 参数化的表示,而令 X ˙ ( t ) {\displaystyle {\dot {X}}(t)} 的参数表示方式无关。使曲线最短的欧拉-拉格朗日方程有以下的对称形式

其中

依P的定义可得下式

因此上述积分可改为下式

依照上式,若可以找到一个函数ψ,其梯度为,则以上的积分就可以由在积分端点上ψ的差求得。以上求解曲线使积分量不变的问题就和ψ的level surface有关。为了要找到满足此条件的函数ψ,需要对控制光线传动的波动方程进行进一步的研究。

最优控制的理论是变分法的一个推广。

相关

  • 牙齿牙齿存在于很多脊椎动物(鸟类除外)的头部(或口部)内、功能用于咀嚼食物的钙化组织。肉食性动物尤其倚赖牙齿进行猎食或搏斗、御敌。牙齿的构成成分不是骨骼,而是由动物体内不同
  • 罗吉尔·培根罗吉尔·培根(英语:Roger Bacon,1214年-1294年),英国方济各会修士、哲学家、炼金术士。他学识渊博,著作涉及当时所知的各门类知识,并对阿拉伯世界的科学进展十分熟悉。提倡经验主义,
  • 体细胞体细胞(英文:somatic cell)是相对于生殖细胞的概念。这类细胞的遗传信息不会像生殖细胞那样遗传给下一代。高等生物的细胞大部分都是体细胞,除了精子和卵细胞以及它们的母细胞之
  • 平行平行是一个几何学术语。在平面几何中,永远不会相交的多条直线,或者多个平面彼此互相平行。在欧几里得几何中,由平行公设,一个平面上的直线外指定一个点,就能指定出一条与它平行的
  • 宫保鸡丁宫保鸡丁(英语:Kung Pao chicken或Kung-Pao Chicken),呈煳辣荔枝味,是源于黔菜、流传至鲁而后成于川菜的一道川味名菜。相传宫保鸡丁是清朝光绪年间的署理四川总督丁宝桢所发明,是
  • 方便记忆记忆术(英语:Mnemonic)又译助忆,是一种辅助记忆的方法,例如诗、韵文或是图像。人们在日常生活中经常使用缩写、口诀来记忆一些复杂的内容。例如,学生在学习眼球的解剖结构的时候会
  • 尼龙尼龙(英语:Nylon),又译为奈纶、耐纶、尼纶、锦纶,是一种人造聚合物、纤维、塑料,发明于1935年2月28日,发明者为美国威尔明顿杜邦公司的华莱士·卡罗瑟斯。1938年尼龙正式上市,最早的
  • 国立原住民族博物馆国立原住民族博物馆为台湾规划中的国家级原住民族博物馆,将落脚于高雄市鸟松区澄清湖,邻近高雄捷运黄线,预计2025年开馆。2016年三月,来自花莲县的立委萧美琴,在质询张善政时表示
  • 乌兹别克斯坦索姆索姆(乌兹别克语:so‘m / сўм,ISO代码:UZS),是乌兹别克斯坦共和国的法定货币。1索姆可分为100泰因(Tiyin / Тийин,或译为“提因”)。
  • 腹股沟腹股沟、鼠蹊或鼠蹊部(拉丁语:regio inguinalis),是指人体腹部连接腿部交界处的凹沟,其附近区域称为腹股沟;位于大腿内侧生殖器两旁,在人体解剖学上属于腹部。腹股沟部有深、浅的淋