变分法

✍ dations ◷ 2025-12-04 18:35:34 #数学分析,变分法,最优化

变分法是处理泛函的数学领域,和处理函数的普通微积分相对。譬如,这样的泛函可以通过未知函数的积分和它的导数来构造。变分法最终寻求的是极值函数:它们使得泛函取得极大或极小值。有些曲线上的经典问题采用这种形式表达:一个例子是最速降线,在重力作用下一个粒子沿着该路径可以在最短时间从点A到达不直接在它底下的一点B。在所有从A到B的曲线中必须极小化代表下降时间的表达式。

变分法的关键定理是欧拉-拉格朗日方程。它对应于泛函的临界点。在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。它不能分辨是找到了最大值或者最小值(或者都不是)。

变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用量原理在量子力学的应用中。变分法提供了有限元方法的数学基础,它是求解边界值问题的强力工具。它们也在材料学中研究材料平衡中大量使用。而在纯数学中的例子有,黎曼在调和函数中使用狄利克雷原理。

同样的材料可以出现在不同的标题中,例如希尔伯特空间技术,莫尔斯理论,或者辛几何。变分一词用于所有极值泛函问题。微分几何中的测地线的研究是很显然的变分性质的领域。极小曲面(肥皂泡)上也有很多研究工作,称为普拉托问题。

变分法可能是从约翰·伯努利(1696)提出最速曲线(brachistochrone curve)问题开始出现的。它立即引起了雅各布·伯努利和洛必达(Marquis de l'Hôpital)的注意。但欧拉首先详尽的阐述了这个问题。他的贡献始于1733年,他的《变分原理》(Elementa Calculi Variationum)寄予了这门科学这个名字。欧拉对这个理论的贡献非常大。

勒让德(1786)确定了一种方法,但在对极大和极小的区别不完全令人满意。牛顿和莱布尼茨也是在早期关注这一学科,对于这两者的区别Vincenzo Brunacci(1810)、高斯(1829)、泊松(1831)、Mikhail Ostrogradsky(1834)、和雅可比(1837)都曾做出过贡献。Sarrus(1842)的由柯西(1844)浓缩和修改的是一个重要的具有一般性的成就。Strauch(1849)、Jellett(1850)、Otto Hesse(1857)、Alfred Clebsch(1858)、和Carll(1885)写了一些其他有价值的论文和研究报告,但可能那个世纪最重要的成果是Weierstrass所取得的。他关于这个理论的著名教材是划时代的,并且他可能是第一个将变分法置于一个稳固而不容置疑的基础上的。1900年希尔伯特发表的23个问题中的第20和23个问题促进了其更深远的发展。

在20世纪希尔伯特、埃米·诺特、Leonida Tonelli、昂利·勒贝格和雅克·阿达马等人做出重要贡献。Marston Morse将变分法应用在莫尔斯理论中。Lev Pontryagin、Ralph Rockafellar和Clarke广义变分法最优控制理论发展了新的数学工具。

在理想情形下,一函数的极大值及极小值会出现在其导数为 0 {\displaystyle 0} 需有二阶连续的导函数。在这种情形下,拉格朗日量L在极值 f 0 {\displaystyle f_{0}} <0或>0的区域,欧拉-拉格朗日方程均和以上描述的相同。因为折射率在二个区域均为定值,在二个区域光都以直线前进。而在=0的位置,必须连续,不过可以不连续。在上述二个区域用分部积分的方式解欧拉-拉格朗日方程,则其变分量为

n {\displaystyle n_{-}} 为其参数, X ( t ) {\displaystyle X(t)} 参数化的表示,而令 X ˙ ( t ) {\displaystyle {\dot {X}}(t)} 的参数表示方式无关。使曲线最短的欧拉-拉格朗日方程有以下的对称形式

其中

依P的定义可得下式

因此上述积分可改为下式

依照上式,若可以找到一个函数ψ,其梯度为,则以上的积分就可以由在积分端点上ψ的差求得。以上求解曲线使积分量不变的问题就和ψ的level surface有关。为了要找到满足此条件的函数ψ,需要对控制光线传动的波动方程进行进一步的研究。

最优控制的理论是变分法的一个推广。

相关

  • 发射说人类对光学(optics)的研究开始于古代。最晚于公元前700年,古埃及人与美索不达米亚人便开始磨制与使用透镜;之后前6~5世纪时古希腊哲学家与古印度哲学家提出了很多关于视觉与光线
  • 三头政治三头同盟(triumvirate,源于拉丁语“triumvirātus”),指由三个有权之人占主导地位的政治体制,三位都是其中一名“三执政”(英语:triumvir)。这项安排可以是正式的或非正式的,通常三人
  • 路易莎·格罗斯·霍维茨奖路易莎·格罗斯·霍维茨生物学或生物化学奖是一年一度的奖项,由哥伦比亚大学颁给一位研究员或一组研究人员,以表彰其在生物学或生物化学等领域的基础研究中做出的卓越的贡献。
  • 三维空间三维空间(也称为三度空间、三次元、3D),日常生活中可指由长、宽、高三个维度所构成的空间,而且常常是指三维的欧几里得空间。在历史上很长的一段时期中,三维空间被认为是我们生存
  • 彗星型客机德·哈维兰“彗星”(De Havilland Comet,D.H 106)是由英国哈维兰公司研发的喷气式客机。亦是全球首款以喷射引擎为动力的民用飞机,外表以0.5毫米的铝制蒙皮包覆,且可飞行至10000
  • ɐ次开央元音是元音的一种,用于一些口说语言当中,国际音标以⟨ɐ⟩代表此音,而X-SAMPA音标则以⟨6⟩代表此音。国际音标中的此符号为一个倒转的印刷体a。 事实上,国际音标中并没有
  • Accutron宝路华(Bulova)是一家以美国纽约为基地的公司,以生产手表及时钟为主要业务。宝路华由美国一位来自波希米亚的移民约瑟夫·宝路华(Joseph Bulova,1851年─1936年)于1875年创立,当时
  • 卡匹敦期卡匹敦期(英语:Capitanian)是二叠纪的第七个时期,年代大约位于265.1–259.1百万年前。
  • 杰米罗奎尔杰米罗奎尔(英文:Jamiroquai),英国流行乐团。在全世界销售了2000万张唱片,并且在出道后的14年期间占据了162周的英国单曲榜名次。据主唱Jay Kay本人透露,其个人财产高达4000万英磅
  • 王浚王浚(252年-314年),字彭祖,太原晋阳人。西晋骠骑将军王沈之子,自己亦是西晋重要将领,都督幽州诸军事,长驻北方疆土并与北方边族交往频繁。但永嘉之乱后生不臣之心,亦与段部鲜卑交恶,最