变分法

✍ dations ◷ 2025-09-07 19:53:30 #数学分析,变分法,最优化

变分法是处理泛函的数学领域,和处理函数的普通微积分相对。譬如,这样的泛函可以通过未知函数的积分和它的导数来构造。变分法最终寻求的是极值函数:它们使得泛函取得极大或极小值。有些曲线上的经典问题采用这种形式表达:一个例子是最速降线,在重力作用下一个粒子沿着该路径可以在最短时间从点A到达不直接在它底下的一点B。在所有从A到B的曲线中必须极小化代表下降时间的表达式。

变分法的关键定理是欧拉-拉格朗日方程。它对应于泛函的临界点。在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。它不能分辨是找到了最大值或者最小值(或者都不是)。

变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用量原理在量子力学的应用中。变分法提供了有限元方法的数学基础,它是求解边界值问题的强力工具。它们也在材料学中研究材料平衡中大量使用。而在纯数学中的例子有,黎曼在调和函数中使用狄利克雷原理。

同样的材料可以出现在不同的标题中,例如希尔伯特空间技术,莫尔斯理论,或者辛几何。变分一词用于所有极值泛函问题。微分几何中的测地线的研究是很显然的变分性质的领域。极小曲面(肥皂泡)上也有很多研究工作,称为普拉托问题。

变分法可能是从约翰·伯努利(1696)提出最速曲线(brachistochrone curve)问题开始出现的。它立即引起了雅各布·伯努利和洛必达(Marquis de l'Hôpital)的注意。但欧拉首先详尽的阐述了这个问题。他的贡献始于1733年,他的《变分原理》(Elementa Calculi Variationum)寄予了这门科学这个名字。欧拉对这个理论的贡献非常大。

勒让德(1786)确定了一种方法,但在对极大和极小的区别不完全令人满意。牛顿和莱布尼茨也是在早期关注这一学科,对于这两者的区别Vincenzo Brunacci(1810)、高斯(1829)、泊松(1831)、Mikhail Ostrogradsky(1834)、和雅可比(1837)都曾做出过贡献。Sarrus(1842)的由柯西(1844)浓缩和修改的是一个重要的具有一般性的成就。Strauch(1849)、Jellett(1850)、Otto Hesse(1857)、Alfred Clebsch(1858)、和Carll(1885)写了一些其他有价值的论文和研究报告,但可能那个世纪最重要的成果是Weierstrass所取得的。他关于这个理论的著名教材是划时代的,并且他可能是第一个将变分法置于一个稳固而不容置疑的基础上的。1900年希尔伯特发表的23个问题中的第20和23个问题促进了其更深远的发展。

在20世纪希尔伯特、埃米·诺特、Leonida Tonelli、昂利·勒贝格和雅克·阿达马等人做出重要贡献。Marston Morse将变分法应用在莫尔斯理论中。Lev Pontryagin、Ralph Rockafellar和Clarke广义变分法最优控制理论发展了新的数学工具。

在理想情形下,一函数的极大值及极小值会出现在其导数为 0 {\displaystyle 0} 需有二阶连续的导函数。在这种情形下,拉格朗日量L在极值 f 0 {\displaystyle f_{0}} <0或>0的区域,欧拉-拉格朗日方程均和以上描述的相同。因为折射率在二个区域均为定值,在二个区域光都以直线前进。而在=0的位置,必须连续,不过可以不连续。在上述二个区域用分部积分的方式解欧拉-拉格朗日方程,则其变分量为

n {\displaystyle n_{-}} 为其参数, X ( t ) {\displaystyle X(t)} 参数化的表示,而令 X ˙ ( t ) {\displaystyle {\dot {X}}(t)} 的参数表示方式无关。使曲线最短的欧拉-拉格朗日方程有以下的对称形式

其中

依P的定义可得下式

因此上述积分可改为下式

依照上式,若可以找到一个函数ψ,其梯度为,则以上的积分就可以由在积分端点上ψ的差求得。以上求解曲线使积分量不变的问题就和ψ的level surface有关。为了要找到满足此条件的函数ψ,需要对控制光线传动的波动方程进行进一步的研究。

最优控制的理论是变分法的一个推广。

相关

  • 核糖病毒域核糖病毒域(Riboviria)是指病毒的域,也是至2019年3月唯一被定义的病毒域。 核糖病毒域包含RNA病毒及类病毒等项目,但不包含逆转录病毒项目。 核糖病毒域名字的第一部分(ribo-)指
  • 直布罗陀镑直布罗陀镑 (货币编号: GIP)是直布罗陀的法定货币。与英镑等值。 自1927年起,直布罗陀开始发行自己的货币。
  • 心包腔心包,又名心膜,是一个圆锥形双层纤维浆膜囊,包裹心脏和出入心脏大血管根部。心包的两层分别为:心包的学名pericardium来自希腊语的περι(环绕、周围)与κάρδιον(心脏)两字
  • 提法使提法使,中国清朝官衔,其正式官衙名称为提法使司。其最高行政长官为提法使,官秩正三品,由原本的按察使改任之。清光绪33年(1908年)始设于东三省,宣统2年(1910年)时扩大由各省按察使改
  • 寐龙寐龙属(学名:Mei)是伤齿龙科恐龙的一属,体型只有鸭一般大小,化石最先于2004年在中国辽宁省发掘出来。寐龙生存于下白垩纪时期。它的属名应为单一个“寐”字,而种小名为“龙”,两者
  • 元培计划北京大学元培学院是北京大学于2001年9月20日启动的以老校长蔡元培的名字命名的本科教育和教学改革计划。元培学院和以前的元培计划实验班是元培计划的产物。北京大学在选课
  • 奖牌奖章或奖牌是一种拥有浮雕的金属制奖励品,一般用以奖励那些在运动、军事、科学、学术、艺术上或其他领域拥有特别成就及贡献者。在许多非军事项目,如一般的体育比赛,会颁发奖牌
  • 太空舱太空舱是一种形状简单的航天器(往往是载人的),没有机翼即可再入地球大气层。太空舱与卫星的主要区别是,能够受控再入,并携带有效载荷从轨道返回地面。尽管已经有载人航天飞机被发
  • 市镇small/small美国波多黎各自由邦有78个市镇。
  • Windows NTWindows NT 4.0是微软Windows NT家族的第四套产品,代号Shell Update Release,于1996年7月29日发行给制造商。为一个32位的操作系统,分为工作站以及服务器版本。而其图形操作界