典型群

✍ dations ◷ 2025-11-20 05:46:12 #李群,有限群


无限单李群:An, Bn, Cn, Dn,
特殊单李群 G2(英语:G2 (mathematics)) F4E6 E7E8(英语:E8 (mathematics))

在数学中,典型群(classical group)指与欧几里得空间的对称密切相关的四族无穷多李群。术语“经典”的使用取决于语境,有一定的灵活性。这个用法可能源于赫尔曼·外尔,他的专著 Weyl (1939) 以“典型群”为题。在菲利克斯·克莱因爱尔兰根纲领的观点下,也许反映了它们和“经典”几何(classical geometry)的关系。

有时在紧群的限制下讨论典型群,这样容易处理它们的表示论和代数拓扑。但是这把一般线性群排除在外,当前都认为一般线性群是最典型的群。

和典型李群相对的是例外李群,具有一样的抽象性质,但不属于同一类。

典型李群共同的特点是它们都与某个特定的双线性或半双线性形式的等距同构群密切联系。这四类用邓肯图标记(下标 ≥ 1),可以描述为:

为了某些特定的目的,去掉行列式为 1 的条件考虑酉群和(不连通)正交群也是自然的。表中所列即为所谓连通紧实形式群;在复数域中有相应的类比,以及多种非紧形式,例如,和紧正交群一起可考虑不定正交群。这些群相应的李代数称为“典型李代数”。

在代数中,考虑更广泛的典型群,给出特别值得关注的矩阵群。当矩阵群的系数环为实数或复数域时,这些群就是上述的典型李群。

当系数环是有限域时,典型群是李型群。这些群在有限单群的分类中扮演着重要的角色。考虑他们的抽象群理论,许多线性群有一个“特殊”子群,常常由行列式为 1 的元素组成,大部分有一个伴随的“射影”群,它们是除掉群中心的商群。

“一般”一词在群的名称前面通常表示这个群可以用常数乘以某个形式,而不是保持不变。下标 经常表示群作用的模之维数。特别注意:这种记法和 Dynkin 图中的 (为秩)可能冲突。

一般线性群 () 是某个模的自同构群。有子群特殊线性群 () ,以及商群射影一般线性群 () = ()/(()) 和射影特殊线性群 () = ()/(())。当 2 或 =2 且域 的阶数不为 2 或 3 时,域 上的射影特殊线性群 () 为单群。

酉群 () 是保持某个模的半双线性形式的群。有子群特殊酉群 (),以及他们的商群射影酉群 () = ()/(()) 与射影特殊酉群 () = ()/(())。

辛群 2() 保持一个模的斜对称形式。它有一个商群射影辛群 2()。将模的斜对称形式乘以一个可逆纯量的所有自同构组成一般辛群 2() 。除了 =1 且域的阶数为 2 或 3 这两个例外,域 上射影辛群 2() 是单群。

正交群 () 保持一个模的非退化二次型。有子群特殊正交群 (),以及商群射影正交群 () 与射影特殊正交群。在特征为 2 时,行列式总是 1,故特殊正交群常定义为 Dickson 不变量为 1 的元素。

有一个没有名字的群,经常记为 Ω(),由所有 Spinor 模为 1 的正交群中元素组成。相应的子群和商群为 Ω(),Ω(),Ω()(对实数域上正定二次型,群 Ω 就是正交群,但一般要比正交群小)。Ω() 也有一个二重复盖群,称为 Spin 群 ()。一般正交群由在二次型上的作用为乘以一个可逆纯量的自同构组成。

相关

  • 胡仁源胡仁源(1883年-1942年),字次珊,浙江吴兴人。中华民国教育家。1899年到1901年,胡仁源就读南洋公学师范班。1902年中壬寅科举人,入京师大学堂就读,后来赴日本留学仙台高等学校、赴英国
  • 天意天意可以指:
  • 东北暗沙东北暗沙位于南沙群岛北部,双子群礁东北缘,贡士礁以南约1海里,最浅处水深约3米。1983年中国地名委员会公布的标准名称为“东北暗沙”。西方文献一般称为“Day Shoal”。
  • 威廉 (霍亨索伦)霍亨索伦亲王威廉(德语:Wilhelm August Karl Joseph Peter Ferdinand Benedikt von Hohenzollern;1864年3月7日-1927年10月22日),出生于本拉特宫(英语:Schloss Benrath),是前任霍亨索
  • Su-Ki 水陆两栖车Su-Ki水陆两栖车是第二次世界大战期间由日本丰田汽车生产的军用水陆两栖车。于1943年服役并被部署到位于太平洋战区的日军部队中。Su-Ki是一台由大日本帝国陆军研制的两吨级
  • 俄勒冈振子方程俄勒冈振子方程是描写俄勒冈振子的数学模型。俄勒冈振子指下列化学反应:俄勒冈振子的数学模拟由如下常微分方程组表示:。 f 1 := e
  • 冒名顶替症候群冒名顶替症候群(英语:Impostor syndrome),亦称为冒名顶替现象(英语:impostor phenomenon)、骗子症候群(英语:fraud syndrome)。这个名称是在1978年由临床心理学家克兰斯博士(英语:Paulin
  • 沃森·琼斯沃森·琼斯(英语:Watson Jones),美国音频工程师。他曾因电影明月冰心-照杏林(英语:Not as a Stranger)提名奥斯卡最佳音响效果奖。
  • 接近整数在趣味数学中,接近整数是指很接近整数的无理数。这类数字中,有些因为其数学上的特性使其接近整数,有些还找不到其特性,看起来似乎只是巧合。黄金比例 ϕ
  • 比利·布朗威廉·比利·布朗(英语:William Billy Brown,1970年10月30日-),是一位美国演员。他出现在许多美国的电影及电视剧里,其中较为知名的是2014年他在珊达·莱梅斯所制作的电视剧《谋杀