典型群

✍ dations ◷ 2025-12-10 20:02:49 #李群,有限群


无限单李群:An, Bn, Cn, Dn,
特殊单李群 G2(英语:G2 (mathematics)) F4E6 E7E8(英语:E8 (mathematics))

在数学中,典型群(classical group)指与欧几里得空间的对称密切相关的四族无穷多李群。术语“经典”的使用取决于语境,有一定的灵活性。这个用法可能源于赫尔曼·外尔,他的专著 Weyl (1939) 以“典型群”为题。在菲利克斯·克莱因爱尔兰根纲领的观点下,也许反映了它们和“经典”几何(classical geometry)的关系。

有时在紧群的限制下讨论典型群,这样容易处理它们的表示论和代数拓扑。但是这把一般线性群排除在外,当前都认为一般线性群是最典型的群。

和典型李群相对的是例外李群,具有一样的抽象性质,但不属于同一类。

典型李群共同的特点是它们都与某个特定的双线性或半双线性形式的等距同构群密切联系。这四类用邓肯图标记(下标 ≥ 1),可以描述为:

为了某些特定的目的,去掉行列式为 1 的条件考虑酉群和(不连通)正交群也是自然的。表中所列即为所谓连通紧实形式群;在复数域中有相应的类比,以及多种非紧形式,例如,和紧正交群一起可考虑不定正交群。这些群相应的李代数称为“典型李代数”。

在代数中,考虑更广泛的典型群,给出特别值得关注的矩阵群。当矩阵群的系数环为实数或复数域时,这些群就是上述的典型李群。

当系数环是有限域时,典型群是李型群。这些群在有限单群的分类中扮演着重要的角色。考虑他们的抽象群理论,许多线性群有一个“特殊”子群,常常由行列式为 1 的元素组成,大部分有一个伴随的“射影”群,它们是除掉群中心的商群。

“一般”一词在群的名称前面通常表示这个群可以用常数乘以某个形式,而不是保持不变。下标 经常表示群作用的模之维数。特别注意:这种记法和 Dynkin 图中的 (为秩)可能冲突。

一般线性群 () 是某个模的自同构群。有子群特殊线性群 () ,以及商群射影一般线性群 () = ()/(()) 和射影特殊线性群 () = ()/(())。当 2 或 =2 且域 的阶数不为 2 或 3 时,域 上的射影特殊线性群 () 为单群。

酉群 () 是保持某个模的半双线性形式的群。有子群特殊酉群 (),以及他们的商群射影酉群 () = ()/(()) 与射影特殊酉群 () = ()/(())。

辛群 2() 保持一个模的斜对称形式。它有一个商群射影辛群 2()。将模的斜对称形式乘以一个可逆纯量的所有自同构组成一般辛群 2() 。除了 =1 且域的阶数为 2 或 3 这两个例外,域 上射影辛群 2() 是单群。

正交群 () 保持一个模的非退化二次型。有子群特殊正交群 (),以及商群射影正交群 () 与射影特殊正交群。在特征为 2 时,行列式总是 1,故特殊正交群常定义为 Dickson 不变量为 1 的元素。

有一个没有名字的群,经常记为 Ω(),由所有 Spinor 模为 1 的正交群中元素组成。相应的子群和商群为 Ω(),Ω(),Ω()(对实数域上正定二次型,群 Ω 就是正交群,但一般要比正交群小)。Ω() 也有一个二重复盖群,称为 Spin 群 ()。一般正交群由在二次型上的作用为乘以一个可逆纯量的自同构组成。

相关

  • 假日假日,是指大多数人都不用上班及上课的日子,亦纪念特别事件的日子。连续数天的假日称为假期。现代假日的习俗源于以基督教信仰为主的欧洲国家,原本是特别的宗教日子,例如主日(Holy
  • 转诊转诊(英语:referral)是指将病患从一个诊所或临床医生(英语:clinician)转送到其他医疗机构。像初级医疗或二级医疗的病患可能会依其病况需要,送到三级医疗机构。
  • 萨那萨那(阿拉伯语:صنعاء‎.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium","Ge
  • 地出地出(英语:Earthrise,或译地球上升),为美国国家航空航天局的照片。这张编号“AS8-14-2383HR”的照片由正在阿波罗8号太空船上执行前往月球任务的宇航员威廉·安德斯在1968年12月2
  • 青木原青木原(日语:青木ヶ原/あおきがはら)位于日本富士山西北侧山麓,横跨山梨县富士河口湖町与鸣泽村,周围有西湖、精进湖与本栖湖等堰塞湖。青木原为熔岩台地地形,标高约介于920米~130
  • 朝鲜民主主义人民共和国政府朝鲜民主主义人民共和国主题根据《朝鲜民主主义人民共和国宪法》的规定,内阁(1972-1998年称政务院)是朝鲜国家最高权力的行政执行机关,是总括性的国家管理机关。内阁由总理、副总
  • 查尔斯·E·美林查尔斯·爱德华·梅里尔(英语:Charles Edward Merrill,1885年10月19日-1956年10月6日)是美国股票经纪人,银行家,慈善家,和埃德蒙·C·林奇共同创立美林证券公司(以前称为Charles E. M
  • 被治者的同意被治者的同意(英语:the consent of the governed)指源于洛克的政治理论,19世纪的经济自由主义政治架构下,政府是一公民社会,由“被治者的同意”所建立,政府需在法律下提供自由及保
  • 詹姆斯·霍根 (美国军人)詹姆斯·霍根(英语:James Hogun,?-1781年1月4日)是美国独立战争期间北卡罗莱纳殖民地的5位大陆军将领之一。霍根起初是北卡罗莱纳第7团的少校,之后在1776年迅速晋升成该团指挥官。1
  • 丁辉 (军人)丁辉(1975年-),锡伯族,籍贯辽宁开原,中华人民共和国军人,一级军士长军衔。1994年在家乡入伍,先后参加过建国50周年阅兵、建国60周年阅兵、抗战胜利70周年阅兵、建军90周年阅兵以及建