典型群

✍ dations ◷ 2025-11-18 15:23:41 #李群,有限群


无限单李群:An, Bn, Cn, Dn,
特殊单李群 G2(英语:G2 (mathematics)) F4E6 E7E8(英语:E8 (mathematics))

在数学中,典型群(classical group)指与欧几里得空间的对称密切相关的四族无穷多李群。术语“经典”的使用取决于语境,有一定的灵活性。这个用法可能源于赫尔曼·外尔,他的专著 Weyl (1939) 以“典型群”为题。在菲利克斯·克莱因爱尔兰根纲领的观点下,也许反映了它们和“经典”几何(classical geometry)的关系。

有时在紧群的限制下讨论典型群,这样容易处理它们的表示论和代数拓扑。但是这把一般线性群排除在外,当前都认为一般线性群是最典型的群。

和典型李群相对的是例外李群,具有一样的抽象性质,但不属于同一类。

典型李群共同的特点是它们都与某个特定的双线性或半双线性形式的等距同构群密切联系。这四类用邓肯图标记(下标 ≥ 1),可以描述为:

为了某些特定的目的,去掉行列式为 1 的条件考虑酉群和(不连通)正交群也是自然的。表中所列即为所谓连通紧实形式群;在复数域中有相应的类比,以及多种非紧形式,例如,和紧正交群一起可考虑不定正交群。这些群相应的李代数称为“典型李代数”。

在代数中,考虑更广泛的典型群,给出特别值得关注的矩阵群。当矩阵群的系数环为实数或复数域时,这些群就是上述的典型李群。

当系数环是有限域时,典型群是李型群。这些群在有限单群的分类中扮演着重要的角色。考虑他们的抽象群理论,许多线性群有一个“特殊”子群,常常由行列式为 1 的元素组成,大部分有一个伴随的“射影”群,它们是除掉群中心的商群。

“一般”一词在群的名称前面通常表示这个群可以用常数乘以某个形式,而不是保持不变。下标 经常表示群作用的模之维数。特别注意:这种记法和 Dynkin 图中的 (为秩)可能冲突。

一般线性群 () 是某个模的自同构群。有子群特殊线性群 () ,以及商群射影一般线性群 () = ()/(()) 和射影特殊线性群 () = ()/(())。当 2 或 =2 且域 的阶数不为 2 或 3 时,域 上的射影特殊线性群 () 为单群。

酉群 () 是保持某个模的半双线性形式的群。有子群特殊酉群 (),以及他们的商群射影酉群 () = ()/(()) 与射影特殊酉群 () = ()/(())。

辛群 2() 保持一个模的斜对称形式。它有一个商群射影辛群 2()。将模的斜对称形式乘以一个可逆纯量的所有自同构组成一般辛群 2() 。除了 =1 且域的阶数为 2 或 3 这两个例外,域 上射影辛群 2() 是单群。

正交群 () 保持一个模的非退化二次型。有子群特殊正交群 (),以及商群射影正交群 () 与射影特殊正交群。在特征为 2 时,行列式总是 1,故特殊正交群常定义为 Dickson 不变量为 1 的元素。

有一个没有名字的群,经常记为 Ω(),由所有 Spinor 模为 1 的正交群中元素组成。相应的子群和商群为 Ω(),Ω(),Ω()(对实数域上正定二次型,群 Ω 就是正交群,但一般要比正交群小)。Ω() 也有一个二重复盖群,称为 Spin 群 ()。一般正交群由在二次型上的作用为乘以一个可逆纯量的自同构组成。

相关

  • 滑膜炎滑膜炎是滑膜(英语:Synovial membrane)发炎的医学术语。滑膜内衬于具有空腔的关节,称为滑液关节。滑膜炎常造成疼痛,尤其是在关节活动时。由于滑液的增生累积,关节通常会肿胀。滑
  • 台南新报《台澎日报》,1899年由日本人富地近思于台南州创立,1903年增资后更名《台南新报》,为台湾日治时期台湾岛内与北台湾的《台湾日日新报》、中台湾的《台湾新闻》齐名的三大报之一
  • 苏美语幼发拉底河 · 底格里斯河乌鲁克 · 乌尔 · 埃利都 启什 · 拉格什 · 尼普尔 阿卡德帝国 · 库提 乌尔第三王朝 · 伊辛第一王朝 · 拉尔萨 · 伊辛第二王朝古巴比
  • 王心凌王心凌(英文名:Cyndi Wang,1982年9月5日-),原名王君如,台湾女歌手、女演员。毕业于华冈艺校戏剧科,出生于台湾新竹县。父亲为祖籍山东青岛的外省人第二代,母亲为新竹县关西镇客家人,后
  • 美女甜甜圈!!!美女甜甜圈!!!(日语:アイドリング!!!,英语:Idoling!!!),日本女子团体,于2006年10月30日在富士电视台的综艺节目中结成。2015年10月5日,于日本武道馆最终演唱会上宣布全部成员于10月31日
  • 九州铁道纪念馆九州铁道纪念馆(日语:九州鉄道記念館)是位于日本福冈县北九州市门司区清滝二丁目3番29号的一座以铁路为主题的博物馆。九州铁道纪念馆开业于2003年8月9日,靠近门司港站。2014年,
  • Au5Atom RecordingsArmada Music(英语:Armada Music)Adapted RecordsRottun RecordingsViper RecordingsAnemnesisFunky Element RecordsGravitas RecordingsWalt Disney Records/
  • 克鲁格奖克鲁格人文与社会科学终身成就奖(英语:Kluge Prize)是美国国会图书馆颁发的一个奖项,对象是在人文研究范畴做出重大和深远的贡献的学者,由电视大亨约翰·克鲁格(英语:John Kluge)资
  • 黑暗奇幻黑暗奇幻是奇幻的子类型,它可以是文学、电影及其他各种艺术作品的作品类型。黑暗奇幻作品有着比奇幻更加可怕的幻想主题,并经常结合恐怖的元素。这个词可以广泛地指有阴沉、黑
  • 杨格杨格,或译扬或杨(Young)是一个英格兰人、爱尔兰人和苏格兰人的姓氏。可指下列人物: