典型群

✍ dations ◷ 2025-12-06 12:18:30 #李群,有限群


无限单李群:An, Bn, Cn, Dn,
特殊单李群 G2(英语:G2 (mathematics)) F4E6 E7E8(英语:E8 (mathematics))

在数学中,典型群(classical group)指与欧几里得空间的对称密切相关的四族无穷多李群。术语“经典”的使用取决于语境,有一定的灵活性。这个用法可能源于赫尔曼·外尔,他的专著 Weyl (1939) 以“典型群”为题。在菲利克斯·克莱因爱尔兰根纲领的观点下,也许反映了它们和“经典”几何(classical geometry)的关系。

有时在紧群的限制下讨论典型群,这样容易处理它们的表示论和代数拓扑。但是这把一般线性群排除在外,当前都认为一般线性群是最典型的群。

和典型李群相对的是例外李群,具有一样的抽象性质,但不属于同一类。

典型李群共同的特点是它们都与某个特定的双线性或半双线性形式的等距同构群密切联系。这四类用邓肯图标记(下标 ≥ 1),可以描述为:

为了某些特定的目的,去掉行列式为 1 的条件考虑酉群和(不连通)正交群也是自然的。表中所列即为所谓连通紧实形式群;在复数域中有相应的类比,以及多种非紧形式,例如,和紧正交群一起可考虑不定正交群。这些群相应的李代数称为“典型李代数”。

在代数中,考虑更广泛的典型群,给出特别值得关注的矩阵群。当矩阵群的系数环为实数或复数域时,这些群就是上述的典型李群。

当系数环是有限域时,典型群是李型群。这些群在有限单群的分类中扮演着重要的角色。考虑他们的抽象群理论,许多线性群有一个“特殊”子群,常常由行列式为 1 的元素组成,大部分有一个伴随的“射影”群,它们是除掉群中心的商群。

“一般”一词在群的名称前面通常表示这个群可以用常数乘以某个形式,而不是保持不变。下标 经常表示群作用的模之维数。特别注意:这种记法和 Dynkin 图中的 (为秩)可能冲突。

一般线性群 () 是某个模的自同构群。有子群特殊线性群 () ,以及商群射影一般线性群 () = ()/(()) 和射影特殊线性群 () = ()/(())。当 2 或 =2 且域 的阶数不为 2 或 3 时,域 上的射影特殊线性群 () 为单群。

酉群 () 是保持某个模的半双线性形式的群。有子群特殊酉群 (),以及他们的商群射影酉群 () = ()/(()) 与射影特殊酉群 () = ()/(())。

辛群 2() 保持一个模的斜对称形式。它有一个商群射影辛群 2()。将模的斜对称形式乘以一个可逆纯量的所有自同构组成一般辛群 2() 。除了 =1 且域的阶数为 2 或 3 这两个例外,域 上射影辛群 2() 是单群。

正交群 () 保持一个模的非退化二次型。有子群特殊正交群 (),以及商群射影正交群 () 与射影特殊正交群。在特征为 2 时,行列式总是 1,故特殊正交群常定义为 Dickson 不变量为 1 的元素。

有一个没有名字的群,经常记为 Ω(),由所有 Spinor 模为 1 的正交群中元素组成。相应的子群和商群为 Ω(),Ω(),Ω()(对实数域上正定二次型,群 Ω 就是正交群,但一般要比正交群小)。Ω() 也有一个二重复盖群,称为 Spin 群 ()。一般正交群由在二次型上的作用为乘以一个可逆纯量的自同构组成。

相关

  • 葡萄状肉瘤葡萄状肉瘤(英语:Sarcoma botryoides, Botryoid Sarcoma, Botryoid Rhabdomyosarcoma)是胚胎性横纹肌肉瘤(英语:embryonal rhabdomyosarcoma)下的一个子类,它常常在空细胞壁、粘膜
  • 绥芬河绥芬河可以指:
  • 辑安集安市是吉林省通化市下辖的一个县级市,位于吉林省东南部的长白山脚下,与朝鲜满浦隔鸭绿江相邻,是中国对朝鲜三大边境口岸之一。集安曾是古代高句丽王国的都城所在地。集安地处
  • 双电子偶素双电子偶素是由两个电子偶素所组成的分子,化学式为Ps2,是约翰·惠勒在1946年预言它的存在 ,随后双电子偶素都只有理论上的研究。直到2007年才由加州大学河滨分校的大卫·卡西迪
  • 萨尔玛·海耶克萨尔玛·海耶克·希梅内斯(西班牙语:Salma Hayek Jiménez,1966年9月2日-),墨西哥-美国女演员、导演、影视制作人。她至今共出演、执导过30部电影、电视节目,著作有:《爱是唯一》、
  • 中铁置业中铁置业集团有限公司,注册地位于北京,隶属于中国铁路工程集团的上市公司中国中铁。业务性质为房地产开发。2017年,公司总资产728.07亿元,净资产80.35亿元,净利润6.27亿元。
  • 国家冰淇淋月国家冰淇淋月(英语:National Ice Cream Month)是一种起源于美国第298号联合决议案(英语:Joint resolution)。1984年5月17日,由参议员沃尔特·“迪伊”·赫德尔斯顿(英语:Walter Dee H
  • 沈黎晖沈黎晖(1968年4月28日-),出生于中华人民共和国北京市。中国大陆歌手、唱片制作人、音乐评论。1980年代中期,组建"清醒"乐队,任乐队主唱。 2009年6月,沈黎晖受湖南卫视邀请点评快乐
  • 中国人民武装警察部队警官证中国人民武装警察部队警官证是中国人民武装警察部队警官的身份证件。1994年10月22日,《公安部关于更换中国人民武装警察部队警官证文职干部证的通知》(公通字〔1994〕83号)下发
  • 杨福昌杨福昌(1932年12月-),河北人,中华人民共和国政治人物、外交官。北京对外贸易学院和开罗大学校友。1984年,接替鲁明担任中华人民共和国驻科威特大使。1987年,由管子怀接任。1993年,担