典型群

✍ dations ◷ 2025-06-29 02:07:40 #李群,有限群


无限单李群:An, Bn, Cn, Dn,
特殊单李群 G2(英语:G2 (mathematics)) F4E6 E7E8(英语:E8 (mathematics))

在数学中,典型群(classical group)指与欧几里得空间的对称密切相关的四族无穷多李群。术语“经典”的使用取决于语境,有一定的灵活性。这个用法可能源于赫尔曼·外尔,他的专著 Weyl (1939) 以“典型群”为题。在菲利克斯·克莱因爱尔兰根纲领的观点下,也许反映了它们和“经典”几何(classical geometry)的关系。

有时在紧群的限制下讨论典型群,这样容易处理它们的表示论和代数拓扑。但是这把一般线性群排除在外,当前都认为一般线性群是最典型的群。

和典型李群相对的是例外李群,具有一样的抽象性质,但不属于同一类。

典型李群共同的特点是它们都与某个特定的双线性或半双线性形式的等距同构群密切联系。这四类用邓肯图标记(下标 ≥ 1),可以描述为:

为了某些特定的目的,去掉行列式为 1 的条件考虑酉群和(不连通)正交群也是自然的。表中所列即为所谓连通紧实形式群;在复数域中有相应的类比,以及多种非紧形式,例如,和紧正交群一起可考虑不定正交群。这些群相应的李代数称为“典型李代数”。

在代数中,考虑更广泛的典型群,给出特别值得关注的矩阵群。当矩阵群的系数环为实数或复数域时,这些群就是上述的典型李群。

当系数环是有限域时,典型群是李型群。这些群在有限单群的分类中扮演着重要的角色。考虑他们的抽象群理论,许多线性群有一个“特殊”子群,常常由行列式为 1 的元素组成,大部分有一个伴随的“射影”群,它们是除掉群中心的商群。

“一般”一词在群的名称前面通常表示这个群可以用常数乘以某个形式,而不是保持不变。下标 经常表示群作用的模之维数。特别注意:这种记法和 Dynkin 图中的 (为秩)可能冲突。

一般线性群 () 是某个模的自同构群。有子群特殊线性群 () ,以及商群射影一般线性群 () = ()/(()) 和射影特殊线性群 () = ()/(())。当 2 或 =2 且域 的阶数不为 2 或 3 时,域 上的射影特殊线性群 () 为单群。

酉群 () 是保持某个模的半双线性形式的群。有子群特殊酉群 (),以及他们的商群射影酉群 () = ()/(()) 与射影特殊酉群 () = ()/(())。

辛群 2() 保持一个模的斜对称形式。它有一个商群射影辛群 2()。将模的斜对称形式乘以一个可逆纯量的所有自同构组成一般辛群 2() 。除了 =1 且域的阶数为 2 或 3 这两个例外,域 上射影辛群 2() 是单群。

正交群 () 保持一个模的非退化二次型。有子群特殊正交群 (),以及商群射影正交群 () 与射影特殊正交群。在特征为 2 时,行列式总是 1,故特殊正交群常定义为 Dickson 不变量为 1 的元素。

有一个没有名字的群,经常记为 Ω(),由所有 Spinor 模为 1 的正交群中元素组成。相应的子群和商群为 Ω(),Ω(),Ω()(对实数域上正定二次型,群 Ω 就是正交群,但一般要比正交群小)。Ω() 也有一个二重复盖群,称为 Spin 群 ()。一般正交群由在二次型上的作用为乘以一个可逆纯量的自同构组成。

相关

  • 林园事件林园事件发生于台湾高雄县林园乡(今高雄市林园区),是一起以石油化学工业为主的林园工业区污染所引发的纠纷事件。 1988年7月20日中油林园厂油管破裂漏油,同年8月27日,陈情人向高
  • 阿拉伯联合酋长国阿拉伯半岛(白色)阿拉伯联合酋长国(阿拉伯语:دولة الإمارات العربية المتحدة‎),通称阿联酋,是由阿布扎比、沙迦、迪拜、阿治曼、富查伊拉、乌姆盖万、
  • 林学钰林学钰(1937年3月6日-),中国水文地质和环境水文地质学家。出生于上海。籍贯福建福州。1957年毕业于长春地质学院水文地质及工程地质系。1997年当选为中国科学院院士。曾任华东师
  • 获取政权纳粹党掌权(德语:Machtergreifung,德语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000",
  • 一国一城令一国一城令是日本在元和元年(1615年)闰6月13日由江户幕府所发布的命令。在一国(此处的“国”是指令制国,或大名的领国(之后的藩))中,由大名所居住作为政厅所在的城只能保留一个,其余
  • 国际宇航大会国际宇航大会(International Astronautical Congress,缩写 IAC),是每年举办一届的国际会议,旨在向各参与者提供最新的太空情报以及发展状况。大会采用每年更换举办国,主题和组织者
  • 山雷山雷(‘Hin-mah-too-yah-lat-kekt’,美国拼字法(英语:Americanist phonetic notation)为‘Hinmatóowyalahtq'it’;一般被称为约瑟夫酋长或小约瑟夫;1840年3月3日-1904年9月21日)是内
  • 徐观徐观(1430年-?),字子明,广东广州府香山县人,军籍,明朝政治人物。同进士出身。景泰元年(1450年)庚午科广东乡试第八十五名。景泰五年(1454年)中式甲戌科进士。廷对后,请假完婚。历官至南京
  • 河内孝博河内 孝博(1966年5月14日-)是日本男性声优、旁白和播报员。
  • 吴淡如吴淡如(1964年11月22日-),生于台湾宜兰县,台湾专栏作家及主持人,曾荣获全国学生文学奖散文佳作及优选。亦曾任记者。毕业于台北市立第一女子高级中学,国立台湾大学法律学系学士,国立