典型群

✍ dations ◷ 2025-11-15 13:12:24 #李群,有限群


无限单李群:An, Bn, Cn, Dn,
特殊单李群 G2(英语:G2 (mathematics)) F4E6 E7E8(英语:E8 (mathematics))

在数学中,典型群(classical group)指与欧几里得空间的对称密切相关的四族无穷多李群。术语“经典”的使用取决于语境,有一定的灵活性。这个用法可能源于赫尔曼·外尔,他的专著 Weyl (1939) 以“典型群”为题。在菲利克斯·克莱因爱尔兰根纲领的观点下,也许反映了它们和“经典”几何(classical geometry)的关系。

有时在紧群的限制下讨论典型群,这样容易处理它们的表示论和代数拓扑。但是这把一般线性群排除在外,当前都认为一般线性群是最典型的群。

和典型李群相对的是例外李群,具有一样的抽象性质,但不属于同一类。

典型李群共同的特点是它们都与某个特定的双线性或半双线性形式的等距同构群密切联系。这四类用邓肯图标记(下标 ≥ 1),可以描述为:

为了某些特定的目的,去掉行列式为 1 的条件考虑酉群和(不连通)正交群也是自然的。表中所列即为所谓连通紧实形式群;在复数域中有相应的类比,以及多种非紧形式,例如,和紧正交群一起可考虑不定正交群。这些群相应的李代数称为“典型李代数”。

在代数中,考虑更广泛的典型群,给出特别值得关注的矩阵群。当矩阵群的系数环为实数或复数域时,这些群就是上述的典型李群。

当系数环是有限域时,典型群是李型群。这些群在有限单群的分类中扮演着重要的角色。考虑他们的抽象群理论,许多线性群有一个“特殊”子群,常常由行列式为 1 的元素组成,大部分有一个伴随的“射影”群,它们是除掉群中心的商群。

“一般”一词在群的名称前面通常表示这个群可以用常数乘以某个形式,而不是保持不变。下标 经常表示群作用的模之维数。特别注意:这种记法和 Dynkin 图中的 (为秩)可能冲突。

一般线性群 () 是某个模的自同构群。有子群特殊线性群 () ,以及商群射影一般线性群 () = ()/(()) 和射影特殊线性群 () = ()/(())。当 2 或 =2 且域 的阶数不为 2 或 3 时,域 上的射影特殊线性群 () 为单群。

酉群 () 是保持某个模的半双线性形式的群。有子群特殊酉群 (),以及他们的商群射影酉群 () = ()/(()) 与射影特殊酉群 () = ()/(())。

辛群 2() 保持一个模的斜对称形式。它有一个商群射影辛群 2()。将模的斜对称形式乘以一个可逆纯量的所有自同构组成一般辛群 2() 。除了 =1 且域的阶数为 2 或 3 这两个例外,域 上射影辛群 2() 是单群。

正交群 () 保持一个模的非退化二次型。有子群特殊正交群 (),以及商群射影正交群 () 与射影特殊正交群。在特征为 2 时,行列式总是 1,故特殊正交群常定义为 Dickson 不变量为 1 的元素。

有一个没有名字的群,经常记为 Ω(),由所有 Spinor 模为 1 的正交群中元素组成。相应的子群和商群为 Ω(),Ω(),Ω()(对实数域上正定二次型,群 Ω 就是正交群,但一般要比正交群小)。Ω() 也有一个二重复盖群,称为 Spin 群 ()。一般正交群由在二次型上的作用为乘以一个可逆纯量的自同构组成。

相关

  • 粳米Oryza sativa ssp. keng Ting粳稻(“粳”,拼音:jīng,注音:ㄐㄧㄥ,音同“精(jīng)”)粳稻是水稻的一个品种。粳稻需要日照时间短,但生长期长,比较耐寒,米质粘性强,米粒短圆。粳稻碾出的
  • 朱苏力朱苏力(1955年4月1日-),出生于安徽合肥,中国法学家,北京大学教授,曾任北京大学法学院院长。1970年入伍。1978年考入北京大学法律系。1985年,赴美公派留学。1992年回国,在北京大学法律
  • 路易·诺塔里图书馆路易·诺塔里图书馆(法语:Bibliothèque Louis Notari)是摩纳哥的国家图书馆,建立于1909年。 自1925年开始成为摩纳哥的法定送存图书馆,藏书量在30至40万。其名称则是为了纪念摩
  • 法国总统法兰西共和国总统(法语:Président de la République française),简称法国总统,是法国的国家元首。总统是国家元首和武装部队最高司令。现时的法国是第五共和,根据1958年的《法
  • 罗湿陀罗拘陀罗湿陀罗拘陀王朝(梵语:राष्ट्रकूट;英语:Rashtrakuta dynasty)8世纪~10世纪时存在于印度中部与南部的一个重要王国。罗湿陀罗拘陀人的起源不详。有人认为他们是拉其普
  • 乌督饭乌督饭是印度尼西亚风味的蒸饭,它起源于印度尼西亚多个地方,但较具体的说法是起源于印度尼西亚的首府耶加达。和马来西亚的椰浆饭类似。它是由蒸饭与椰浆、肉豆蔻粉、桂皮、高
  • 酸民酸民是指喜欢对事情发表尖酸刻薄言论,而不在乎事情对错的网民。有一种说法是酸民一词是来自于批踢踢(一个台湾的电子布告栏),因批踢踢的使用者被称为乡民(源自周星驰《九品芝麻官
  • 泰勒·科文泰勒·科文(Tyler Cowen,1962年1月21日-),美国经济学家与作家。他在乔治梅森大学(George Mason University, GMU)担任经济学教授。他是纽约时报专栏-经济学视野(Economic Scene)的主笔
  • 丘恩乔利姆丘恩乔利姆(Cuncolim),是印度果阿邦South Goa县的一个城镇。总人口15848(2001年)。该地2001年总人口15848人,其中男性7736人,女性8112人;0—6岁人口1488人,其中男772人,女716人;识字率7
  • 纳哈佩特《纳哈佩特》(亚美尼亚语:Նահապետ),又名《生命得胜》(英语:),是一部在1977年上映的亚美尼亚剧情片,剧情乃是基于赫拉奇亚·科恰尔所创作同名小说,讲述一名亚美尼亚大屠杀生还者