典型群

✍ dations ◷ 2025-11-30 02:03:10 #李群,有限群


无限单李群:An, Bn, Cn, Dn,
特殊单李群 G2(英语:G2 (mathematics)) F4E6 E7E8(英语:E8 (mathematics))

在数学中,典型群(classical group)指与欧几里得空间的对称密切相关的四族无穷多李群。术语“经典”的使用取决于语境,有一定的灵活性。这个用法可能源于赫尔曼·外尔,他的专著 Weyl (1939) 以“典型群”为题。在菲利克斯·克莱因爱尔兰根纲领的观点下,也许反映了它们和“经典”几何(classical geometry)的关系。

有时在紧群的限制下讨论典型群,这样容易处理它们的表示论和代数拓扑。但是这把一般线性群排除在外,当前都认为一般线性群是最典型的群。

和典型李群相对的是例外李群,具有一样的抽象性质,但不属于同一类。

典型李群共同的特点是它们都与某个特定的双线性或半双线性形式的等距同构群密切联系。这四类用邓肯图标记(下标 ≥ 1),可以描述为:

为了某些特定的目的,去掉行列式为 1 的条件考虑酉群和(不连通)正交群也是自然的。表中所列即为所谓连通紧实形式群;在复数域中有相应的类比,以及多种非紧形式,例如,和紧正交群一起可考虑不定正交群。这些群相应的李代数称为“典型李代数”。

在代数中,考虑更广泛的典型群,给出特别值得关注的矩阵群。当矩阵群的系数环为实数或复数域时,这些群就是上述的典型李群。

当系数环是有限域时,典型群是李型群。这些群在有限单群的分类中扮演着重要的角色。考虑他们的抽象群理论,许多线性群有一个“特殊”子群,常常由行列式为 1 的元素组成,大部分有一个伴随的“射影”群,它们是除掉群中心的商群。

“一般”一词在群的名称前面通常表示这个群可以用常数乘以某个形式,而不是保持不变。下标 经常表示群作用的模之维数。特别注意:这种记法和 Dynkin 图中的 (为秩)可能冲突。

一般线性群 () 是某个模的自同构群。有子群特殊线性群 () ,以及商群射影一般线性群 () = ()/(()) 和射影特殊线性群 () = ()/(())。当 2 或 =2 且域 的阶数不为 2 或 3 时,域 上的射影特殊线性群 () 为单群。

酉群 () 是保持某个模的半双线性形式的群。有子群特殊酉群 (),以及他们的商群射影酉群 () = ()/(()) 与射影特殊酉群 () = ()/(())。

辛群 2() 保持一个模的斜对称形式。它有一个商群射影辛群 2()。将模的斜对称形式乘以一个可逆纯量的所有自同构组成一般辛群 2() 。除了 =1 且域的阶数为 2 或 3 这两个例外,域 上射影辛群 2() 是单群。

正交群 () 保持一个模的非退化二次型。有子群特殊正交群 (),以及商群射影正交群 () 与射影特殊正交群。在特征为 2 时,行列式总是 1,故特殊正交群常定义为 Dickson 不变量为 1 的元素。

有一个没有名字的群,经常记为 Ω(),由所有 Spinor 模为 1 的正交群中元素组成。相应的子群和商群为 Ω(),Ω(),Ω()(对实数域上正定二次型,群 Ω 就是正交群,但一般要比正交群小)。Ω() 也有一个二重复盖群,称为 Spin 群 ()。一般正交群由在二次型上的作用为乘以一个可逆纯量的自同构组成。

相关

  • 科西嘉岛坐标:42°9′N 9°5′E / 42.150°N 9.083°E / 42.150; 9.083科西嘉岛(科西嘉语:Corsica;法语:Corse)是西地中海的一座岛屿,也是法国最大的岛屿,处于意大利西方,法国东南部及萨丁岛
  • 国家音乐厅国家音乐厅,位于台湾台北市,与国家戏剧院合称为“国家两厅院”,为中华民国重要的音乐表演场地。原隶属教育部国立中正文化中心,2014年4月2日改为文化部监督之行政法人国家表演艺
  • 前列腺计算值前列腺计算值是前列腺前后径的平方与前列腺横径的比值;是对良性前列腺增生症患者最大尿流率评估的辅助依据。由于良性前列腺增生症患者前列腺体积与最大尿流率改变不成正比;与
  • 切尔西足球俱乐部切尔西足球俱乐部(英语:Chelsea Football Club),是一间位于英格兰首都伦敦的足球俱乐部,目前比赛于英格兰超级联赛。球队主场为斯坦福桥球场。切尔西足球俱乐部成立至今超过一百
  • 经线经线也称子午线,和纬线一样是人类为度量而假设出来的辅助线,定义为地球表面连接南北两极的大圆线上的半圆弧。任两根经线的长度相等,相交于南北两极点。每一根经线都有其相对应
  • 印度支那 (电影)《印度支那》(法语:)是一套1992年以大时代为背景的法国爱情片,由雷瑞·瓦尼埃执导。这部影片是雷瑞·瓦尼埃所拍的第一部史诗片,内容表现的是1930年代法国人在最后一块法属亚洲殖
  • 朱光焘朱光焘(1886年-1960年)字谋先,祖籍安徽,生于浙江杭州﹐中国实业家。光绪三十二年(1906年),朱光焘入日本东京高等工业学校学习染织。宣统元年(1909年)毕业归国后,获游学毕业进士,授翰林院庶
  • 中兴镇 (都江堰市)中兴镇,是中华人民共和国四川省成都市都江堰市下辖的一个乡镇级行政单位。2019年12月,撤销中兴镇、玉堂镇,设立玉堂街道,以原中兴镇和原玉堂镇所属行政区域为玉堂街道的行政区域
  • 铃木修 (企业家)铃木修(日语:すずき おさむ,1930年1月30日-)乃日本实业家,亦是铃木公司董事会会长兼首席执行官(CEO)。1930年(昭和5年)1月30日出生在岐阜县益田郡下吕町(今下吕市),旧姓为松田。1953年(昭
  • 胡希明胡希明(1907年-1993年),笔名三流、孙飞,男,直隶沧州人,中华人民共和国政治人物,曾任广东省政协副主席,广东省文史研究馆馆长,第五届全国人大代表。