首页 >
弗洛里-哈金斯
✍ dations ◷ 2025-04-02 20:51:07 #弗洛里-哈金斯
弗洛里-哈金斯溶液理论(英语:Flory-Huggins solution theory)是保罗·弗洛里(Paul Flory)和莫里斯·洛伊尔·哈金斯(英语:Maurice Loyal Huggins)提出的一个描述高分子与溶剂混合时体系自由能变化的数学模型。这一模型基于几条简单而理想化的假设,将高分子溶液体系考虑为“似晶格”体系,考虑了高分子和溶剂分子在尺寸上的很大区别对混合熵变的影响和高分子之间与高分子-溶剂之间作用力不同对混合时内能变化的影响。'弗洛里-哈金斯溶液理论具有简洁的形式,能较好地与试验结果吻合。
按照该理论,在一定温度下,高分子和溶剂分子混合时的亥姆霍兹自由能变化等于:等式左边的
Δ
F
m
{displaystyle Delta F_{m}}
指的是高分子和溶剂混合后的体系亥姆霍兹自由能和纯组分的亥姆霍兹自由能总和的差值,有的文献或教材则写作吉布斯能的差值。等式右边的摩尔数
n
1
{displaystyle n_{1}}
和
ϕ
1
{displaystyle phi _{1}}
指的是溶剂的摩尔数和体积分数,而
n
2
{displaystyle n_{2}}
和
ϕ
2
{displaystyle phi _{2}}
分别指的是高分子的摩尔数和体积分数,参数
χ
{displaystyle chi }
是描述高分子和溶剂作用的参数,
R
{displaystyle R}
是气体常数,
T
{displaystyle T}
是热力学温度。根据吉布斯能的定义对于高分子溶液而言,其混合过程中的内能变化
Δ
U
M
{displaystyle Delta U_{M}}
和混合熵变
Δ
S
M
{displaystyle Delta S_{M}}
,均与理想溶液的有所不同。可见,适用于理想溶液的公式不足以描述高分子溶液的性质1930年代末,爱德华·古根海姆(Edward A. Guggenheim)等人开始将溶液考虑成类似晶格的状况。1941年6月,保罗·弗洛里参加了康奈尔大学的一次学术报告会,哈金斯在会上作了关于高分子溶液性质的报告,正在研究非线性分子凝胶点等性质的弗洛里和哈金斯进行了交流,两人建立了终生的友谊。不久之后两人分别发表了文章提出了高分子溶液的“似晶格”模型,这个模型有以下三点假定:首先计算混合所带来的熵变。根据统计热力学里的玻尔兹曼熵公式此处的
k
{displaystyle k}
是玻尔兹曼常数,
Ω
{displaystyle Omega }
为
N
1
{displaystyle N_{1}}
个溶剂分子和
N
2
{displaystyle N_{2}}
个高分子组成的溶液的微观状态数,等于在
N
=
N
1
+
x
N
2
{displaystyle N=N_{1}+xN_{2}}
个格子里放置
N
1
{displaystyle N_{1}}
个溶剂分子和
N
2
{displaystyle N_{2}}
个高分子的排列方法的总数。假定已经有j个高分子被无规地放进晶格里了,则还剩下(N-xj)个空格,则首先计算第j+1个高分子放入这些空格中的放置方法数目。当该高分子的第一个链段放置进晶格里之后,根据链段分布均匀的假定,其附近的平均空着的晶格数与晶格的配位数Z成正比,还和该格子未被高分子的链段占据的
N
−
x
j
−
1
N
{displaystyle {frac {N-xj-1}{N}}}
平均概率成正比,所以第二个链段的放置方法为
Z
(
N
−
x
j
−
1
)
N
{displaystyle {frac {Z(N-xj-1)}{N}}}
。通过概率计算,可以得到排列方法的总数
Ω
=
N
!
N
2
!
(
N
−
x
N
2
)
!
×
(
Z
−
1
N
)
(
x
−
1
)
N
2
{displaystyle Omega ={frac {N!}{N_{2}!(N-xN_{2})!}}times left({frac {Z-1}{N}}right)^{(x-1)N_{2}}}
。通过玻尔兹曼熵公式和斯特林公式,可以得到:如用体积分数表示的话这一等式和理想溶液的混合熵:形式相似,唯一的区别是用体积分数代替了摩尔分数。由于高分子在溶液中既比同样个数的小分子大很多,所以求得的混合熵远比用摩尔分数求得的要大;而高分子的链段间又彼此连接,起不到x个小分子的作用,所以其混合熵又比
x
N
2
{displaystyle xN_{2}}
个小分子与N个溶剂分子混合时要小。在高分子的溶液体系中有三种作用,令其中链段与链段的结合能为
w
22
{displaystyle w_{22}}
,链段与溶剂的结合能为
w
12
{displaystyle w_{12}}
、溶剂与溶剂之间的结合能为
w
11
{displaystyle w_{11}}
。则生成一对链段-溶剂时的结合能等于同样考虑各自被溶剂占据的概率之后,溶液中所有的链段-溶剂作用的总对数为:这里的
Z
{displaystyle Z}
指的是配位数,即某个晶格附近最近的晶格位置。
于是,高分子和溶剂的混合内能变化等于:高分子和溶液的相互作用参数定义为:
χ
12
=
(
Z
−
2
)
Δ
w
/
k
T
{displaystyle chi _{12}=(Z-2)Delta w/kT,}
,被称为高分子-溶剂的相互作用参数,简称相互作用参数,这一参数反映了高分子与溶剂混合时发生的自由能变化,且只与溶剂和溶质的自身性质有关,于是内能变化等于将混合熵变和内能变化的表示式代入亥姆霍兹自由能的定义式,就得到了弗洛里-哈金斯公式相互作用参数可以通过表征高分子和溶剂作用的溶度参数进行估算这里的
V
s
e
g
{displaystyle V_{seg}}
是高分子链的一个链段的真实体积,而
δ
a
{displaystyle delta _{a}}
和
δ
b
{displaystyle delta _{b}}
分别指高分子和溶剂的溶度参数。如需实际测量相互作用参数,则可以借助于蒸气压或渗透压的测量。弗洛里-哈金斯溶液理论给出了混合自由能变和体积分数的关系,溶质和溶剂的化学势变化可通过自由能变求出,而对于稀溶液,溶剂的化学势变化与蒸汽压变化具有以下关系所以可以通过高分子的稀溶液的蒸汽压p1和纯溶剂的蒸汽压的测量求得相互作用参数,或通过测量渗透压,通过第二维利系数求得。弗洛里-哈金斯理论没有考虑高分子链折叠带来的熵,实际上当晶态高分子溶解时,其结晶结构会发生变化;即使是无定形的高分子,分子链的构象也会发生变化,这些变化都会带来附加的熵和能量的变化,而高分子在溶液中的实际分布也并非均一。弗洛里和克雷格鲍姆(W.R.Krigbaum)之后发展了弗洛里-克雷格鲍姆理论,将高分子链段在溶液中的分布描述为高分子质心为中心的正态分布,所得到的模型更接近试验结果
相关
- 高岭土高岭土(英语:Kaolinite),又称观音土、白鳝泥、膨土岩、斑脱石、甘土、皂土、陶土、白泥,是一种含铝的硅酸盐矿物,呈白色软泥状,颗粒细腻,状似面粉。其化学成分相当稳定,被誉为“万能
- 松博尔松博尔(塞尔维亚语:Sombor,德语:Zombor)位于塞尔维亚北部,是西巴奇卡州的首府,面积1,178平方公里,人口51,471人(2002年)。
- 阿格西莱二世阿格西莱二世( Άγησιλαος Β,前444年?-前360年),欧里庞提德世系的斯巴达国王(约前400年—前360年在位)。阿希达穆斯二世之子,在其同父异母的兄弟亚基斯二世死后继承王位。
- 化学史化学史的范围从远古时代一直延伸到今日。到了公元前100000年,各个古文明的科技,像是从矿石提炼金属、制作陶器、酿酒、制作颜料、从植物中提取香料和药物、制备奶酪、染布、制
- 企业号企业号航天飞机(Space Shuttle Enterprise,NASA内部编号OV-101),又译为进取号,是NASA打造的第一架航天飞机。“企业号航天飞机”实际上只是一个的航天的测试平台,没有引擎等相关部
- 法国国家统计与经济研究所法国国家统计与经济研究所(法语: Institut National de la Statistique et des Études Économiques, ,缩写为INSEE),为法国的一家从事统计、经济研究的国家研究机构。法国国家
- 三维空间三维空间(也称为三度空间、三次元、3D),日常生活中可指由长、宽、高三个维度所构成的空间,而且常常是指三维的欧几里得空间。在历史上很长的一段时期中,三维空间被认为是我们生存
- 刘永坦刘永坦(1936年12月1日-),中国电子工程专家。生于江苏南京。先后就读于哈尔滨工业大学与清华大学无线电系。1994年选聘为中国工程院院士。哈尔滨工业大学教授、研究生院院长。199
- 压缩天然气压缩天然气(Compressed Natural Gas,CNG)是一种燃料用天然气,作为石油替代能源,它是环保清洁燃料中比其他燃料泄漏时中安全得多的选项 (天然气比空气轻)。一般通过压缩天然气(主要是
- 网络中心战网络中心战(英语:Network-centric warfare,NCW),现多称网络中心行动(network-centric operations,NCO)是一种美国国防部所创的新军事指导原则,以求化信息优势为战争优势。其做法是用