弗洛里-哈金斯

✍ dations ◷ 2025-04-26 12:14:25 #弗洛里-哈金斯
弗洛里-哈金斯溶液理论(英语:Flory-Huggins solution theory)是保罗·弗洛里(Paul Flory)和莫里斯·洛伊尔·哈金斯(英语:Maurice Loyal Huggins)提出的一个描述高分子与溶剂混合时体系自由能变化的数学模型。这一模型基于几条简单而理想化的假设,将高分子溶液体系考虑为“似晶格”体系,考虑了高分子和溶剂分子在尺寸上的很大区别对混合熵变的影响和高分子之间与高分子-溶剂之间作用力不同对混合时内能变化的影响。'弗洛里-哈金斯溶液理论具有简洁的形式,能较好地与试验结果吻合。 按照该理论,在一定温度下,高分子和溶剂分子混合时的亥姆霍兹自由能变化等于:等式左边的 Δ F m {displaystyle Delta F_{m}} 指的是高分子和溶剂混合后的体系亥姆霍兹自由能和纯组分的亥姆霍兹自由能总和的差值,有的文献或教材则写作吉布斯能的差值。等式右边的摩尔数 n 1 {displaystyle n_{1}} 和 ϕ 1 {displaystyle phi _{1}} 指的是溶剂的摩尔数和体积分数,而 n 2 {displaystyle n_{2}} 和 ϕ 2 {displaystyle phi _{2}} 分别指的是高分子的摩尔数和体积分数,参数 χ {displaystyle chi } 是描述高分子和溶剂作用的参数, R {displaystyle R} 是气体常数, T {displaystyle T} 是热力学温度。根据吉布斯能的定义对于高分子溶液而言,其混合过程中的内能变化 Δ U M {displaystyle Delta U_{M}} 和混合熵变 Δ S M {displaystyle Delta S_{M}} ,均与理想溶液的有所不同。可见,适用于理想溶液的公式不足以描述高分子溶液的性质1930年代末,爱德华·古根海姆(Edward A. Guggenheim)等人开始将溶液考虑成类似晶格的状况。1941年6月,保罗·弗洛里参加了康奈尔大学的一次学术报告会,哈金斯在会上作了关于高分子溶液性质的报告,正在研究非线性分子凝胶点等性质的弗洛里和哈金斯进行了交流,两人建立了终生的友谊。不久之后两人分别发表了文章提出了高分子溶液的“似晶格”模型,这个模型有以下三点假定:首先计算混合所带来的熵变。根据统计热力学里的玻尔兹曼熵公式此处的 k {displaystyle k} 是玻尔兹曼常数, Ω {displaystyle Omega } 为 N 1 {displaystyle N_{1}} 个溶剂分子和 N 2 {displaystyle N_{2}} 个高分子组成的溶液的微观状态数,等于在 N = N 1 + x N 2 {displaystyle N=N_{1}+xN_{2}} 个格子里放置 N 1 {displaystyle N_{1}} 个溶剂分子和 N 2 {displaystyle N_{2}} 个高分子的排列方法的总数。假定已经有j个高分子被无规地放进晶格里了,则还剩下(N-xj)个空格,则首先计算第j+1个高分子放入这些空格中的放置方法数目。当该高分子的第一个链段放置进晶格里之后,根据链段分布均匀的假定,其附近的平均空着的晶格数与晶格的配位数Z成正比,还和该格子未被高分子的链段占据的 N − x j − 1 N {displaystyle {frac {N-xj-1}{N}}} 平均概率成正比,所以第二个链段的放置方法为 Z ( N − x j − 1 ) N {displaystyle {frac {Z(N-xj-1)}{N}}} 。通过概率计算,可以得到排列方法的总数 Ω = N ! N 2 ! ( N − x N 2 ) ! × ( Z − 1 N ) ( x − 1 ) N 2 {displaystyle Omega ={frac {N!}{N_{2}!(N-xN_{2})!}}times left({frac {Z-1}{N}}right)^{(x-1)N_{2}}} 。通过玻尔兹曼熵公式和斯特林公式,可以得到:如用体积分数表示的话这一等式和理想溶液的混合熵:形式相似,唯一的区别是用体积分数代替了摩尔分数。由于高分子在溶液中既比同样个数的小分子大很多,所以求得的混合熵远比用摩尔分数求得的要大;而高分子的链段间又彼此连接,起不到x个小分子的作用,所以其混合熵又比 x N 2 {displaystyle xN_{2}} 个小分子与N个溶剂分子混合时要小。在高分子的溶液体系中有三种作用,令其中链段与链段的结合能为 w 22 {displaystyle w_{22}} ,链段与溶剂的结合能为 w 12 {displaystyle w_{12}} 、溶剂与溶剂之间的结合能为 w 11 {displaystyle w_{11}} 。则生成一对链段-溶剂时的结合能等于同样考虑各自被溶剂占据的概率之后,溶液中所有的链段-溶剂作用的总对数为:这里的 Z {displaystyle Z} 指的是配位数,即某个晶格附近最近的晶格位置。 于是,高分子和溶剂的混合内能变化等于:高分子和溶液的相互作用参数定义为: χ 12 = ( Z − 2 ) Δ w / k T {displaystyle chi _{12}=(Z-2)Delta w/kT,} ,被称为高分子-溶剂的相互作用参数,简称相互作用参数,这一参数反映了高分子与溶剂混合时发生的自由能变化,且只与溶剂和溶质的自身性质有关,于是内能变化等于将混合熵变和内能变化的表示式代入亥姆霍兹自由能的定义式,就得到了弗洛里-哈金斯公式相互作用参数可以通过表征高分子和溶剂作用的溶度参数进行估算这里的 V s e g {displaystyle V_{seg}} 是高分子链的一个链段的真实体积,而 δ a {displaystyle delta _{a}} 和 δ b {displaystyle delta _{b}} 分别指高分子和溶剂的溶度参数。如需实际测量相互作用参数,则可以借助于蒸气压或渗透压的测量。弗洛里-哈金斯溶液理论给出了混合自由能变和体积分数的关系,溶质和溶剂的化学势变化可通过自由能变求出,而对于稀溶液,溶剂的化学势变化与蒸汽压变化具有以下关系所以可以通过高分子的稀溶液的蒸汽压p1和纯溶剂的蒸汽压的测量求得相互作用参数,或通过测量渗透压,通过第二维利系数求得。弗洛里-哈金斯理论没有考虑高分子链折叠带来的熵,实际上当晶态高分子溶解时,其结晶结构会发生变化;即使是无定形的高分子,分子链的构象也会发生变化,这些变化都会带来附加的熵和能量的变化,而高分子在溶液中的实际分布也并非均一。弗洛里和克雷格鲍姆(W.R.Krigbaum)之后发展了弗洛里-克雷格鲍姆理论,将高分子链段在溶液中的分布描述为高分子质心为中心的正态分布,所得到的模型更接近试验结果

相关

  • 链霉菌链霉菌属也称链丝菌,是放线菌门一个大属,约有近千种。链丝菌好气,绝大部分腐生,其基质菌丝不断裂,气生菌丝分化成直的、弯曲的或螺旋状的孢子丝,成熟的孢子丝生成链状的分生孢子,故
  • 非正常死亡非正常死亡在法医学上指由外部作用导致的死亡,包括火灾、溺水等自然灾难;或工伤、医疗事故、交通事故、自杀、他杀、受伤害等人为事故致死。与之相对的正常死亡,则指由内在的健
  • 哥廷根大学哥廷根格奥尔格·奥古斯特大学(德语:Georg-August-Universität Göttingen),简称哥廷根大学,是位于德国西北部下萨克森州南端的哥廷根市的公立研究型大学,因英国国王兼德国汉诺威
  • 注音输入法注音输入法,是一种以注音符号来输入汉字的中文输入法。由于中华民国国民小学基础教育教授注音符号作为中文拼字方法,所以只要知晓该字的发音,就能以此输入法输入文字。相对应之
  • 先天性碘缺乏综合征先天性碘缺乏症候群(又称矮呆病、克汀病、呆小病)是指因产妇对碘的摄取不足,使得婴儿先天性缺乏甲状腺激素(先天性甲状腺机能低下症),而导致严重阻碍身心发展的一种症状。一般通过
  • 4f7 6s22, 8, 18, 25, 8, 2蒸气压3, 2, 1 (微第一:547.1 kJ·mol−1 第二:1085 kJ·mol−1 第三:2404 kJ·mol主条目:铕的同位素铕(Europium)是一种化学元素,符号为Eu,原子序为6
  • 蛋白激酶BAkt,亦被称为蛋白激酶B(PKB),是在如葡萄糖代谢、凋亡、细胞增殖转录及细胞迁移等多种细胞过程中起到重要作用的一种丝氨酸/苏氨酸特异性蛋白激酶(英语:serine/threonine-specific
  • Nasub4/subFe(CN)sub6/sub亚铁氰化钠,一般为十水合物形式,化学式Na4Fe(CN)6·10H2O。亚铁氰化钠是一种柠檬黄色单斜晶系的棱形或针状结晶,溶于水,不溶于醇。在空气中易风化,在50~60 °C的条件下晶体会很快
  • 说不出的爱2004年10月16日 (2004-10-16)-2005年6月5日 (2005-06-05)《致父亲母亲》((朝鲜语:부모님 전상서/父母 全尚書 Bumonim-Jeonsangseo;英文:Precious Family),为韩国KBS电视台由2004
  • 傀儡戏木偶戏,又叫木偶剧、傀儡戏、人偶戏,是一种不以真人演出,而以操控傀儡的方式演出的戏剧,有许多种类。根据出土文物与历史资料显示,傀儡戏是中国历史上最早出现具有表演功能的戏剧