首页 >
弗洛里-哈金斯
✍ dations ◷ 2025-04-25 09:54:06 #弗洛里-哈金斯
弗洛里-哈金斯溶液理论(英语:Flory-Huggins solution theory)是保罗·弗洛里(Paul Flory)和莫里斯·洛伊尔·哈金斯(英语:Maurice Loyal Huggins)提出的一个描述高分子与溶剂混合时体系自由能变化的数学模型。这一模型基于几条简单而理想化的假设,将高分子溶液体系考虑为“似晶格”体系,考虑了高分子和溶剂分子在尺寸上的很大区别对混合熵变的影响和高分子之间与高分子-溶剂之间作用力不同对混合时内能变化的影响。'弗洛里-哈金斯溶液理论具有简洁的形式,能较好地与试验结果吻合。
按照该理论,在一定温度下,高分子和溶剂分子混合时的亥姆霍兹自由能变化等于:等式左边的
Δ
F
m
{displaystyle Delta F_{m}}
指的是高分子和溶剂混合后的体系亥姆霍兹自由能和纯组分的亥姆霍兹自由能总和的差值,有的文献或教材则写作吉布斯能的差值。等式右边的摩尔数
n
1
{displaystyle n_{1}}
和
ϕ
1
{displaystyle phi _{1}}
指的是溶剂的摩尔数和体积分数,而
n
2
{displaystyle n_{2}}
和
ϕ
2
{displaystyle phi _{2}}
分别指的是高分子的摩尔数和体积分数,参数
χ
{displaystyle chi }
是描述高分子和溶剂作用的参数,
R
{displaystyle R}
是气体常数,
T
{displaystyle T}
是热力学温度。根据吉布斯能的定义对于高分子溶液而言,其混合过程中的内能变化
Δ
U
M
{displaystyle Delta U_{M}}
和混合熵变
Δ
S
M
{displaystyle Delta S_{M}}
,均与理想溶液的有所不同。可见,适用于理想溶液的公式不足以描述高分子溶液的性质1930年代末,爱德华·古根海姆(Edward A. Guggenheim)等人开始将溶液考虑成类似晶格的状况。1941年6月,保罗·弗洛里参加了康奈尔大学的一次学术报告会,哈金斯在会上作了关于高分子溶液性质的报告,正在研究非线性分子凝胶点等性质的弗洛里和哈金斯进行了交流,两人建立了终生的友谊。不久之后两人分别发表了文章提出了高分子溶液的“似晶格”模型,这个模型有以下三点假定:首先计算混合所带来的熵变。根据统计热力学里的玻尔兹曼熵公式此处的
k
{displaystyle k}
是玻尔兹曼常数,
Ω
{displaystyle Omega }
为
N
1
{displaystyle N_{1}}
个溶剂分子和
N
2
{displaystyle N_{2}}
个高分子组成的溶液的微观状态数,等于在
N
=
N
1
+
x
N
2
{displaystyle N=N_{1}+xN_{2}}
个格子里放置
N
1
{displaystyle N_{1}}
个溶剂分子和
N
2
{displaystyle N_{2}}
个高分子的排列方法的总数。假定已经有j个高分子被无规地放进晶格里了,则还剩下(N-xj)个空格,则首先计算第j+1个高分子放入这些空格中的放置方法数目。当该高分子的第一个链段放置进晶格里之后,根据链段分布均匀的假定,其附近的平均空着的晶格数与晶格的配位数Z成正比,还和该格子未被高分子的链段占据的
N
−
x
j
−
1
N
{displaystyle {frac {N-xj-1}{N}}}
平均概率成正比,所以第二个链段的放置方法为
Z
(
N
−
x
j
−
1
)
N
{displaystyle {frac {Z(N-xj-1)}{N}}}
。通过概率计算,可以得到排列方法的总数
Ω
=
N
!
N
2
!
(
N
−
x
N
2
)
!
×
(
Z
−
1
N
)
(
x
−
1
)
N
2
{displaystyle Omega ={frac {N!}{N_{2}!(N-xN_{2})!}}times left({frac {Z-1}{N}}right)^{(x-1)N_{2}}}
。通过玻尔兹曼熵公式和斯特林公式,可以得到:如用体积分数表示的话这一等式和理想溶液的混合熵:形式相似,唯一的区别是用体积分数代替了摩尔分数。由于高分子在溶液中既比同样个数的小分子大很多,所以求得的混合熵远比用摩尔分数求得的要大;而高分子的链段间又彼此连接,起不到x个小分子的作用,所以其混合熵又比
x
N
2
{displaystyle xN_{2}}
个小分子与N个溶剂分子混合时要小。在高分子的溶液体系中有三种作用,令其中链段与链段的结合能为
w
22
{displaystyle w_{22}}
,链段与溶剂的结合能为
w
12
{displaystyle w_{12}}
、溶剂与溶剂之间的结合能为
w
11
{displaystyle w_{11}}
。则生成一对链段-溶剂时的结合能等于同样考虑各自被溶剂占据的概率之后,溶液中所有的链段-溶剂作用的总对数为:这里的
Z
{displaystyle Z}
指的是配位数,即某个晶格附近最近的晶格位置。
于是,高分子和溶剂的混合内能变化等于:高分子和溶液的相互作用参数定义为:
χ
12
=
(
Z
−
2
)
Δ
w
/
k
T
{displaystyle chi _{12}=(Z-2)Delta w/kT,}
,被称为高分子-溶剂的相互作用参数,简称相互作用参数,这一参数反映了高分子与溶剂混合时发生的自由能变化,且只与溶剂和溶质的自身性质有关,于是内能变化等于将混合熵变和内能变化的表示式代入亥姆霍兹自由能的定义式,就得到了弗洛里-哈金斯公式相互作用参数可以通过表征高分子和溶剂作用的溶度参数进行估算这里的
V
s
e
g
{displaystyle V_{seg}}
是高分子链的一个链段的真实体积,而
δ
a
{displaystyle delta _{a}}
和
δ
b
{displaystyle delta _{b}}
分别指高分子和溶剂的溶度参数。如需实际测量相互作用参数,则可以借助于蒸气压或渗透压的测量。弗洛里-哈金斯溶液理论给出了混合自由能变和体积分数的关系,溶质和溶剂的化学势变化可通过自由能变求出,而对于稀溶液,溶剂的化学势变化与蒸汽压变化具有以下关系所以可以通过高分子的稀溶液的蒸汽压p1和纯溶剂的蒸汽压的测量求得相互作用参数,或通过测量渗透压,通过第二维利系数求得。弗洛里-哈金斯理论没有考虑高分子链折叠带来的熵,实际上当晶态高分子溶解时,其结晶结构会发生变化;即使是无定形的高分子,分子链的构象也会发生变化,这些变化都会带来附加的熵和能量的变化,而高分子在溶液中的实际分布也并非均一。弗洛里和克雷格鲍姆(W.R.Krigbaum)之后发展了弗洛里-克雷格鲍姆理论,将高分子链段在溶液中的分布描述为高分子质心为中心的正态分布,所得到的模型更接近试验结果
相关
- 助产士人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学接生员泛指一切从事接生工作,帮助产妇
- 非形式逻辑非形式逻辑是对自然语言论证的研究,典型特征是不如形式逻辑善于分析。非形式逻辑的焦点在于分析错误的论证来辨别逻辑谬论,和辨别与分类类似的推理策略等活动。用自然语言分析
- 神秘动物学隐匿动物学(英语:Cryptozoology),又称传说动物学,神秘生物学,是一种专门研究未知或传闻动物的动物学,为神秘生物学之一支(另一为隐匿植物学),主要包含两个领域:
- 理科在汉语语境中,理科与文科相对,是指教育体系中对数学、物理、化学、生物、地球科学、地理等与形式科学(数理逻辑)及自然科学相关科目的统称,有别于工科、技术。此词适用于文理分科
- 生态系统多样性生态系统多样性(英语:Ecosystem diversity),可指一个地区的生态系统层次上的多样性,或一个生物圈中的各种生态系统。此词语和生物多样性不同,生物多样性是指是生物或物种变化的程
- 罗伯特·阿克塞尔罗罗伯特·马歇尔·阿克塞尔罗(Robert Axelrod,1943年5月27日-),美国政治学家。自1974年以来,他在密歇根大学任教,研究领域主要为公共政策。
- 碳化硅3.22 g/cm3碳化硅(英语:silicon carbide,carborundum),化学式SiC,俗称金刚砂,宝石名称钻髓,为硅与碳相键结而成的陶瓷状化合物,碳化硅在大自然以莫桑石这种稀罕的矿物的形式存在。自1
- 塞缪尔·韦斯塞缪尔·韦斯(英语:Samuel Weiss,1955年-),加拿大生物化学家、神经生理学家。本科就读于加拿大麦吉尔大学,并获得生物化学理学士学位。随后在卡尔加里大学就读博士,研究神经生物学。
- 蒸腾蒸腾作用(英语:transpiration,或称蒸腾作用)蒸腾作用是透过植物的水分运动和从植物的地上部分蒸发的过程,如叶,茎和花。水对植物是必需的,但只有少量的水被根吸收用于生长和新陈代
- 亨利克·蓬托皮丹亨利克·蓬托皮丹(Henrik Pontoppidan,1857年7月24日-1943年8月21日),丹麦现实主义文学作家,和同胞卡尔·阿道夫·盖勒鲁普一起获得了1917年诺贝尔文学奖。1901年:普吕多姆 | 1902