涡量

✍ dations ◷ 2025-12-01 23:52:38 #涡量
涡量,也称为涡度,是一个流体力学的概念,用以描述流体的旋转情况。数学上,涡度 ζ {displaystyle zeta } 是描述速度场 v → {displaystyle {vec {v}}} 的旋度,是一个向量场。在气象学之中所考虑的流体就是大气,实际上通常就仅考虑涡度的铅直分量;另外,由于大气的速度场是以静止地球为参考坐标,故亦称为相对涡度。当气团的相对涡度为正值时,表示该气团出现逆时针转动;反之,相对涡度负值则为顺时针转动。如果把地球转动都一并考虑的话,涡度就被称为绝对涡度;而绝对涡度与大气厚度的乘积一般而言为常数。由环量定义以及斯托克斯定理,流体中的涡度 ζ {displaystyle zeta } 与环量 Γ {displaystyle Gamma } 有以下关系:以微分形式表示,亦即涡度相当于每单位面积所具有的环量:对于二维流体而言,其涡度向量垂直于流体平面。而若有一流体绕着一个轴心刚体旋动的话,则其涡度值为角速度之两倍;故对这样的流体而言,若涡度值为零的话则必为非旋转流体。但是,非旋转流体仍然可以具有非零值的角速度,如一绕着轴心绕转时、其切线速度刚好正比于流体与轴心距离之倒数的流体,其涡度为零。形象化表示:若在流场之内加入一微小固体于其中,该固体除了顺着流线移动之外、亦会转动的话,则该流场的涡度值非零(如右图)。普遍而言,对黏度低(雷诺数较高)的流体来说,涡度是个相当有用的物理量。在这些情况下,无论速度场有多复杂,除了一小部分空间外、涡度场均可较准地近似为零。这个近似法对二维无黏性的流体而言是正确的,皆因这样的流体之流线场可以透过复分析而解得。对于任何流体,涡度场亦可以透过解与有关速度的方程式之旋度而求得。假若流体是不可压缩的话(马赫数较低),考卢力平衡则可得出下列方程式:其中:即使就真实流体而言,涡度仍然是相当有用的物理量:例如可以透过涡度可以把无黏性流体模型微扰至真实流体。另外,流体的黏性会使涡度从原先的细小区域扩散开去;对于黏度高的流体,其涡度几乎会扩散至整个流体而使得其涡度场非常复杂。与涡度相关的物理量有涡旋曲线,这些曲线的每一点均相切于该点的涡度;而涡旋管则是由通过一封闭曲线上每一点的涡旋曲线所组成的封闭面。涡旋管的强度就是通过该面的涡度量积分;由于涡度之散度为零,故涡旋管强度在管上各处相等。根据赫尔姆霍茨定理,无黏性流体之涡旋管强度亦不随着时间而改变(黏度会令流体出现摩擦损耗因而随时间改变)。另外,就三维流体而言,延长涡旋曲线可导致流体总涡度增加,亦即所谓的涡旋伸展。在浴缸去水口出现的涡旋、以致龙卷风的形成等都是实际例子。透过纳维-斯托克斯方程可以找到流体速度,其方程式为:展开速度的物质导数并找出旋度,则涡度的物质导数可以写成:其中:在气象学应用之中,涡度是用来描述气流相对于地面之水平方向旋转的物理量,其方向可以由右手定则来得知:若气流以逆时针转动则涡度指离地面、顺时针转则指向地面。是故,在北半球的气旋之涡度值为正、反气旋为负;而在南半球,则气旋为负、反气旋为正。涡度的数学表达式可以写成其中:一般而言,上述表达式所指的是相对涡度;而在同一点中的绝对涡度则可藉加上科里奥利量而求得,亦即为地球本身的涡度与空气相对于地球涡度之总和。科里奥利量只与纬度相关,其数学表达式则为 f = 2 Ω sin ⁡ θ {displaystyle f=2Omega sin theta } 。一个常用的相关物理量为位涡度。绝对涡度本身会随着所在地点空气柱高度之变化而改变;但如果将绝对涡度除以空气柱的高度的话,对于绝热流而言则可得出一常量(即位涡度)。以数学表达式示之:其中:中纬度的罗士比波是位涡度守恒的一个例子。空气向南移动时,当科里奥利量减弱到一定程度时,为保持守恒则相对涡度增加,随之然气流作逆时针转动,最终转向北移动;而当科里奥利里增加到一定程度时,基于守恒相对涡度随之下际并使气流作顺时针转动,并最终转向南移动。这个过程不断重复,而形成一个个向西传递的波动。这样的波动就被称为罗士比波。

相关

  • 中大西洋区中大西洋州份(英语:Mid-Atlantic), 通常是指美国境内的在新英格兰和美国南大西洋地区之间的地区。根据不同来源,有不同的定义,它一般包括纽约州、新泽西州、宾夕法尼亚州、特拉华
  • 利百加根据《圣经·创世纪》记载,利百加(希伯来语:רִבְקָה,Rivqa)是以撒(Issac)的妻子,非孪生兄弟以扫和雅各的母亲。她是亚伯拉罕兄弟拿鹤的孙女,彼土利的女儿,亚伯拉罕是以撒的父亲
  • XX染色体(X chromosome)是部分动物决定性别的染色体之一。它出现在X0和XY性别决定系统中。对一般人类来说,女性有两条X染色体,男性X、Y染色体各有一条。在人类约20000至25000个基
  • 奥米加三ω−3脂肪酸(Omega-3 fatty acids)又称n−3脂肪酸,是一类不饱和脂肪酸,其中最重要的3种为:ALA(存在于植物中的油),EPA和DHA(这二种发现存在于海洋动植物油中)。从脂肪酸分子中距离羧基
  • 互操作性互操作性(英文:Interoperability;中文又称为:协同工作能力,互用性)作为一种特性,它指的是不同的系统和组织机构之间相互合作,协同工作(即互操作)的能力。技术系统工程设计(technical sy
  • 维多里奥·狄西嘉维多里奥·狄西嘉(意大利语:Vittorio De Sica,1901年7月7日-1974年11月13日)是一位意大利导演与演员,也是电影史上一位相当重要的导演,四次奥斯卡最佳外语片获奖导演。
  • 出生缺陷先天性障碍,又称先天性疾病、先天畸形、先天缺陷,是指发育中的胎儿因为遗传性疾病或发育环境等因素导致某个部位特征结构畸形,导致在婴儿出生时即有的病症,包括了身体(英语:Physic
  • 朱罗王朝朱罗王朝(泰米尔语:சோழர் குலம், 宽式IPA:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","C
  • 后期圣徒运动后期圣徒运动(英语:Latter Day Saint movement)是从19世纪早期由美国东北部开始的宗教运动,普遍被认为是在该运动中被认为是先知的小约瑟·斯密开始的。这个运动是复原主义中的
  • 戈达德航天中心戈达德太空飞行中心(Goddard Space Flight Center)是美国国家航空航天局一个主要研究中心,位于华盛顿特区东北方约6.5公里处马里兰州的绿带城。戈达德太空飞行中心成立于1959年