包立方程式

✍ dations ◷ 2025-07-09 15:31:37 #包立方程式
泡利方程或称薛定谔-泡利方程,为描述带有自旋1/2的粒子在与电磁场相互作用下的修正方程(自旋1/2粒子例如电子)。在此之前,用以描述粒子行为的薛定谔方程则未考虑到粒子自旋的性质。其为狄拉克方程在非相对论极限下的特例,应用在粒子速度慢到相对论效应可以忽略的场合。泡利方程是由沃尔夫冈·泡利于1927年所建构。一自旋粒子具有质量m、电荷q,于外加电磁场中运动;外加电磁场可以标势ϕ、矢势A = (Ax, Ay, Az)来描述。泡利方程可描述外加电磁场与自旋相互作用的影响:[ 1 2 m ( σ ⋅ ( p − q A ) ) 2 + q ϕ ] | ψ ⟩ = i ℏ ∂ ∂ t | ψ ⟩ {displaystyle left|psi rangle =ihbar {frac {partial }{partial t}}|psi rangle }其中两个旋量分量都满足薛定谔方程这表示系统是有额外但简并的的自由度。另可看出泡利方程的哈密顿算符为:因泡利矩阵的存在,此哈密顿算符为2 × 2矩阵算符。泡利方程的哈密顿算符形似于带电粒子在电磁场中的经典哈密顿算符,但后者没有考虑到自旋。泡利矩阵可以从动能项中移出,只要使用泡利矩阵的关系式:将p = −iħ∇代入,可得到其中B = ∇ × A,即磁场。泡利方程可分拆为两项:i ℏ ∂ ∂ t | ψ ± ⟩ = ( ( p − q A ) 2 2 m + q ϕ ) 1 ^ | ψ ± ⟩ ⏟ S c h r o ¨ d i n g e r   e q u a t i o n − q ℏ 2 m σ ⋅ B | ψ ± ⟩ ⏟ Stern-Gerlach term {displaystyle underbrace {ihbar {frac {partial }{partial t}}|psi _{pm }rangle =left({frac {(mathbf {p} -qmathbf {A} )^{2}}{2m}}+qphi right){hat {1}}|psi _{pm }rangle } _{mathrm {Schr{ddot {o}}dinger~equation} }-underbrace {{frac {qhbar }{2m}}{boldsymbol {sigma }}cdot mathbf {B} |psi _{pm }rangle } _{text{Stern-Gerlach term}}}同上述,而左半部为薛定谔方程(上式Schrödinger equation),右半部施特恩-格拉赫项(上式Stern-Gerlach term)。如此可解释带有一个价电子的原子何以得到得到自旋取向,例如流过不均匀磁场的银原子。相似地,比如在反常塞曼效应,这一项造成磁场中的谱线(对应到能级)分裂。泡利方程为非相对论性的量子力学方程,但其能描述自旋相关的行为,因此其具有薛定谔方程与狄拉克方程的中介角色:注意到:若磁矢势A为零,泡利方程则约化为一个在纯电势ϕ中运动的带电粒子之薛定谔方程:但因为泡利矩阵的存在,此方程是作用在二分量旋量上的。因此仅当磁场存在时,粒子自旋才会对粒子的运动发挥影响。自狄拉克方程开始,设定弱的电磁场相互作用:其中 π → = p → − q A → {displaystyle {vec {pi }}={vec {p}}-q{vec {A}}}利用到如下近似:

相关

  • 神经眼科学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学神经眼科学(英语:Neuro-ophthalmology)
  • 旧字形陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧ 
  • 朝廷朝廷指中国、日本等汉字文化圈国家,在皇帝制度下对宫廷、中央政府等统治机构的总称。“朝”:中文所谓的“朝”字具有代表早晨,有今日(一昼夜)含义,在政治上延伸为今日治天下者,引用
  • 军事基地军事基地是指驻扎一定数量的武装部队进行特定的军事活动,建有相应的组织机构和设施的地区。它是军队遂行作战、进行训练任务的依托。按军种分,有陆军基地、海军基地、空军基地
  • 95号州际公路95号州际公路(Interstate 95,简称I-95)是美国州际公路系统的一部分,共计跨越15州,是美国东岸的交通大动脉,位于东北部的路段更是因为大量的使用量而被称为东北走廊。北起缅因州与
  • 声子声子(Phonon)是晶体中晶体结构集体激发的准粒子,化学势为零,服从玻色-爱因斯坦统计,是一种玻色子。声子本身并不具有物理动量,但是携带有准动量 ℏ
  • 日本锁国锁国是日本江户时代施行的外交政策,于1633年颁布第一次锁国令开始,直到1854年美国海军军官培里率舰叩关为止。当初实行该政策时亦称呼为“海禁”,锁国这名字是由兰学者志筑忠雄
  • 黑月“黑月”源自于巫术。它在天文学任何学说上没有明确的意义。但它的解释是指“黑暗中的明月”,意指“希望”。也有人直接翻译成“黑色的月亮”,也有一些人用“在给定的任何一个
  • span class=nowrapTiClsub3/sub/span三氯化钛或称氯化钛(III),是钛的氯化物之一,化学式为TiCl3。三氯化钛是常见的钛化合物之一,在工业上主要用作烯烃聚合反应的催化剂。固态TiCl3有四种结晶变体,分别称为α-、β-
  • 动物园假说动物园假说(英语:Zoo hypothesis)是指地球人类居住在“动物园”里或者更大的荒原中,外星人不干涉,让人类以自己的方法发展自己的文明及掌握自己的命运。外星人已经找到地球人,但他