首页 >
代数拓扑
✍ dations ◷ 2025-11-09 11:07:21 #代数拓扑
代数拓扑(英语:Algebraic topology)是使用抽象代数的工具来研究拓扑空间的数学分支。代数拓扑的几个主要分支如下:在数学中,同伦群是一个用于分类拓扑空间。基本群是同伦群最简单的例子,记录了空间中环结的信息。直观上来说,同伦群记录了拓扑空间中的基本形状,即“孔洞”的信息。在代数拓扑和抽象代数中,同调(homology,名称部分来源于希腊语ὁμός homos = "同")是一类将一个阿贝尔群或模的序列联系到一个给定数学对象(如拓扑空间、群等)的过程在同调论中,上同调是对一个在上链复形(co-chain)上定义一个阿贝尔群的序列的过程的统称。换言之,上同调是对“上链”、余圈(cocycle)和上边缘(coboundary)的抽象研究。上同调可以看作是一种对拓扑空间赋予代数不变量的方法,但其代数结构比同调更为精炼。上同调源于同调的构造过程的代数对偶。通俗意义上讲,上链的基本意义是为同调的链赋予某种“量”。流形是局部上近似于欧几里得空间的拓扑空间。更精确的说,n-流形上的每一点都有一个同胚于n维欧式空间的邻域。举例来说,直线和圆都是一维流形,但数字8则不是。二维流形也称作曲面。二维流形的例子有平面、球面和环面等可看作三维空间中的物体的对象,但也包括克莱因瓶和实射影平面等不可看作三维空间里的物体,而必须看作四维空间里的物体的对象。'纽结理论是对(数学意义上的)纽结的研究。虽然纽结的概念是受现实生活中的绳结启发,对数学家而言“绳结”的两端是粘连在一起的,因而不能解开。在数学上,纽结的精确定义为圆在三维欧几里得空间R3的嵌入。若一个纽结能由另一个纽结通过对R3变形而得到(亦称环境同痕),我们就将其视为同一个纽结。这样的对环境的变换相当于对一个线圈进行连续操作,但避免剪开线圈或使线圈穿过自身。单纯复形是拓扑空间的一类,由点、线段、三角形等单纯形“粘合”而成。单纯复形不应当与范畴同伦论中的单纯集合混淆。单纯形在组合学中对应于抽象单纯形。CW复形是一种拓扑空间,由J.H.C.怀特海德为迎合同伦论的需要而引入。这类空间比单纯形有更良好的范畴学性质,且仍旧保留其组合学的本质,因此计算方面的考虑没有被忽略。这里的目标是取拓扑空间然后把它们进一步分成范畴或分类。该课题的旧称之一是组合拓扑,蕴含着将重点放在如何从更简单的空间构造空间X的意思。现在应用于代数拓扑的基本方法是通过函子,把空间映射到相应的代数范畴上。例如,通过一种保持空间的同胚关系的方式映射到群上。实现这个目标的主要方法是通过基本群,或者更一般的同伦论,和同调及上同调群。基本群给了我们关于拓扑空间结构的基本信息,但它们经常是非交换的,可能很难使用。(有限)单纯复形的基本群的确有有限表示。另一方面来讲,同调和上同调群是交换群,并且在许多重要情形下是有限生成的。有限生成交换群有完整的分类,并且特别易于使用。通过使用有限生成可交换群可以立刻得出几个有用的结论。单纯复形的n-阶同调群的自由阶等于n-阶贝蒂数(Betti number),所以可以直接使用单纯复形的同调群来计算它的欧拉示性数。作为另外一个例子,闭流形的最高维的积分上同调群可以探测可定向性:该群同构于整数或者0,分别在流形可定向和不可定向时。这样,很多拓扑信息可以在给定拓扑空间的同调中找到。在只定义在单纯复形的单纯同调之上,还可以使用光滑流形的微分结构来通过德拉姆上同调或Čech上同调或层上同调来研究定义在流形上的微分方程的可解性。德拉姆证明所有这些方法是相互关联的,并且对于闭可定向流形,通过单纯同调得出的贝蒂数和从德拉姆上同调导出的是一样的。一般来讲,所有代数几何的构造都是函子式的:概念范畴,函子和自然变换起源于此。基本群,同调和上同调群不仅是两个拓扑空间同胚时的不变量;而且空间的连续映射可以导出所相关的群的一个群同态,而这些同态可以用于证明映射的不存在性(或者,更深入的,存在性)。代数拓扑的经典应用包括:代数拓扑中最著名的问题之一是庞加莱猜想,它已经由俄国数学家格里戈里·佩雷尔曼于2003年解决。同伦论领域包含了很多悬疑,如表述球面的同伦群的正确方式等。
相关
- 独立宣言《美国独立宣言》(英语:United States Declaration of Independence),为北美洲十三个英属殖民地宣告自大不列颠王国独立,并宣明此举正当性之文告。1776年7月4日,本宣言由第二次大
- 三读五对三读五对是台湾药师及护理师在发放药物给病患,或是为住院病人给药时,为避免给药错误,因此建议执行的程序,属于一种减少人为错误的人工作业方式,可以避免因发放药物错误而造成的医
- 诱发电位测试事件相关电位(英语:event-related potential,ERP)是一项基于脑电图技术的,在神经科学领域中有广泛应用的研究手段。在国际心理生理学研究学会(Society for Psychophysiological Re
- 亚硝酸酯亚硝酸酯,通式为R-ONO,是一类含氮有机化合物。亚硝酸酯可看做是亚硝酸与醇类酯化形成的酯。一般由醇与亚硝酸钠在硫酸中反应制备。也可由二级溴代烷与亚硝酸银反应而得。亚硝
- 微丝微丝(microfilament)是由肌动蛋白(Actin)组成的直径约为7nm的纤维结构。肌动蛋白单体(全称为“球状肌动蛋白”,简称“G肌动蛋白”)表面上有一个ATP结合位点。肌动蛋白单体可一个接
- 许旺泰奥多尔·施旺(德语:Theodor Schwann,1810年12月7日-1882年1月11日),德国动物学家。他在生物领域贡献巨大,包括发展了细胞学说,施旺细胞的发现和对胃蛋白酶的发现与研究。更进一步
- 核子在化学和物理学里,核子(nucleon)是组成原子核的粒子。每个原子核都拥有至少一个核子,每个原子又是由原子核与围绕原子核的一个或多个电子所组成。核子共有两种:中子和质子。任意
- 安默斯特学院阿默斯特学院(Amherst College,发音:/ˈæmərst/)位于美国马萨诸塞州,是麻省第三古老的高等教育机构,也是全美排名最高的文理学院之一。美国总统卡尔文·柯立芝、美国国务卿罗伯
- 旅游业德国观光:德国是世界入境游客数第7多的国家。2012年,有4072.6万名外国游客到访德国并在德国停留超过一晚。2009年,大多数到访德国的外国游客主要来自荷兰、美国和瑞士。此外,还
- Adobe InDesignAdobe InDesign是Adobe公司的一个桌面出版(DTP)的应用程序,主要用于各种印刷品的排版编辑。Adobe InDesign是直接针对其竞争对手QuarkXPress而发布的。虽然其最初在争取用户方
