首页 >
代数拓扑
✍ dations ◷ 2025-11-30 01:13:23 #代数拓扑
代数拓扑(英语:Algebraic topology)是使用抽象代数的工具来研究拓扑空间的数学分支。代数拓扑的几个主要分支如下:在数学中,同伦群是一个用于分类拓扑空间。基本群是同伦群最简单的例子,记录了空间中环结的信息。直观上来说,同伦群记录了拓扑空间中的基本形状,即“孔洞”的信息。在代数拓扑和抽象代数中,同调(homology,名称部分来源于希腊语ὁμός homos = "同")是一类将一个阿贝尔群或模的序列联系到一个给定数学对象(如拓扑空间、群等)的过程在同调论中,上同调是对一个在上链复形(co-chain)上定义一个阿贝尔群的序列的过程的统称。换言之,上同调是对“上链”、余圈(cocycle)和上边缘(coboundary)的抽象研究。上同调可以看作是一种对拓扑空间赋予代数不变量的方法,但其代数结构比同调更为精炼。上同调源于同调的构造过程的代数对偶。通俗意义上讲,上链的基本意义是为同调的链赋予某种“量”。流形是局部上近似于欧几里得空间的拓扑空间。更精确的说,n-流形上的每一点都有一个同胚于n维欧式空间的邻域。举例来说,直线和圆都是一维流形,但数字8则不是。二维流形也称作曲面。二维流形的例子有平面、球面和环面等可看作三维空间中的物体的对象,但也包括克莱因瓶和实射影平面等不可看作三维空间里的物体,而必须看作四维空间里的物体的对象。'纽结理论是对(数学意义上的)纽结的研究。虽然纽结的概念是受现实生活中的绳结启发,对数学家而言“绳结”的两端是粘连在一起的,因而不能解开。在数学上,纽结的精确定义为圆在三维欧几里得空间R3的嵌入。若一个纽结能由另一个纽结通过对R3变形而得到(亦称环境同痕),我们就将其视为同一个纽结。这样的对环境的变换相当于对一个线圈进行连续操作,但避免剪开线圈或使线圈穿过自身。单纯复形是拓扑空间的一类,由点、线段、三角形等单纯形“粘合”而成。单纯复形不应当与范畴同伦论中的单纯集合混淆。单纯形在组合学中对应于抽象单纯形。CW复形是一种拓扑空间,由J.H.C.怀特海德为迎合同伦论的需要而引入。这类空间比单纯形有更良好的范畴学性质,且仍旧保留其组合学的本质,因此计算方面的考虑没有被忽略。这里的目标是取拓扑空间然后把它们进一步分成范畴或分类。该课题的旧称之一是组合拓扑,蕴含着将重点放在如何从更简单的空间构造空间X的意思。现在应用于代数拓扑的基本方法是通过函子,把空间映射到相应的代数范畴上。例如,通过一种保持空间的同胚关系的方式映射到群上。实现这个目标的主要方法是通过基本群,或者更一般的同伦论,和同调及上同调群。基本群给了我们关于拓扑空间结构的基本信息,但它们经常是非交换的,可能很难使用。(有限)单纯复形的基本群的确有有限表示。另一方面来讲,同调和上同调群是交换群,并且在许多重要情形下是有限生成的。有限生成交换群有完整的分类,并且特别易于使用。通过使用有限生成可交换群可以立刻得出几个有用的结论。单纯复形的n-阶同调群的自由阶等于n-阶贝蒂数(Betti number),所以可以直接使用单纯复形的同调群来计算它的欧拉示性数。作为另外一个例子,闭流形的最高维的积分上同调群可以探测可定向性:该群同构于整数或者0,分别在流形可定向和不可定向时。这样,很多拓扑信息可以在给定拓扑空间的同调中找到。在只定义在单纯复形的单纯同调之上,还可以使用光滑流形的微分结构来通过德拉姆上同调或Čech上同调或层上同调来研究定义在流形上的微分方程的可解性。德拉姆证明所有这些方法是相互关联的,并且对于闭可定向流形,通过单纯同调得出的贝蒂数和从德拉姆上同调导出的是一样的。一般来讲,所有代数几何的构造都是函子式的:概念范畴,函子和自然变换起源于此。基本群,同调和上同调群不仅是两个拓扑空间同胚时的不变量;而且空间的连续映射可以导出所相关的群的一个群同态,而这些同态可以用于证明映射的不存在性(或者,更深入的,存在性)。代数拓扑的经典应用包括:代数拓扑中最著名的问题之一是庞加莱猜想,它已经由俄国数学家格里戈里·佩雷尔曼于2003年解决。同伦论领域包含了很多悬疑,如表述球面的同伦群的正确方式等。
相关
- 脑血管障壁脑血管障壁(英语:blood–brain barrier ,BBB),也称为血脑屏障或血脑障壁,指在血管和脑之间有一种选择性地阻止某些物质由血液进入大脑的“屏障”。19世纪末,保罗·埃尔利希在一个实
- 卡洛林文艺复兴卡洛林文艺复兴(Carolingian Renaissance),发生在公元8世纪晚期至9世纪的卡洛林王朝,由查理曼及其后续者在欧洲推行的文艺的复兴运动,主要的进步在文学、艺术、宗教典籍、建筑、
- 退伍退伍(英语:Military discharge),指服完常备役或预备役之后,离开军队,恢复一般公民身份至社会工作之军人。
- 尼波斯科尔奈利乌斯·奈波斯(拉丁语:Cornelius Nepos,约100 BC-约25 BC,或译康涅利乌斯·尼波斯)是古罗马的传记作家。出生于山南高卢的小镇荷斯提利亚(Hostilia,今奥斯蒂利亚)。对其高卢血
- 阿卜杜拉赫曼·瓦希德阿卜杜拉赫曼·瓦希德(印尼语:Abdurrahman Wahid( 读音 帮助·信息,1940年9月7日-2009年12月30日),华语姓氏陈 印度尼西亚政治家,盲人政治家,民族觉醒党创立者,曾任印度尼西亚总统(199
- 王粲王粲(177年-217年2月17日),字仲宣,山阳郡高平县(今山东省济宁市微山县)人。擅长辞赋,建安七子之一,被誉为“七子之冠冕”。汉献帝西迁的时候,王粲来到长安,去拜访名士蔡邕。当时蔡邕家
- INSEE编码INSEE编码是由法国的国家统计机构法国国家统计与经济研究所(法语:Institut National de la Statistique et des Études Économiques,缩写为INSEE)制定的一种编码,与统计数据有
- CD90n/an/an/an/an/an/an/an/an/an/aThy-1 或 CD90(Cluster of Differentiation 90,分化簇90)是一个25-37kDa重度N-糖基化的细胞表面蛋白质,通过C-末端的糖磷脂酰肌醇(glycophosphat
- 烟雾弹红鲱鱼(Red Herring)是英文熟语。指以修辞或文学的手法转移议题焦点与注意力,是一种政治宣传、公关及戏剧创作的技巧。红鲱鱼当成转移焦点的代名词有几种不同的起源。其中的一
- 直尺直尺,亦称为间尺,是一种用于量度长度的仪器或文具。这种文具极为普遍,几乎每位小学生都有,通常用于量度较短的距离或画出直线。现代的直尺则多与三角尺、量角器、圆规等制成套装
