首页 >
代数拓扑
✍ dations ◷ 2025-07-18 11:58:50 #代数拓扑
代数拓扑(英语:Algebraic topology)是使用抽象代数的工具来研究拓扑空间的数学分支。代数拓扑的几个主要分支如下:在数学中,同伦群是一个用于分类拓扑空间。基本群是同伦群最简单的例子,记录了空间中环结的信息。直观上来说,同伦群记录了拓扑空间中的基本形状,即“孔洞”的信息。在代数拓扑和抽象代数中,同调(homology,名称部分来源于希腊语ὁμός homos = "同")是一类将一个阿贝尔群或模的序列联系到一个给定数学对象(如拓扑空间、群等)的过程在同调论中,上同调是对一个在上链复形(co-chain)上定义一个阿贝尔群的序列的过程的统称。换言之,上同调是对“上链”、余圈(cocycle)和上边缘(coboundary)的抽象研究。上同调可以看作是一种对拓扑空间赋予代数不变量的方法,但其代数结构比同调更为精炼。上同调源于同调的构造过程的代数对偶。通俗意义上讲,上链的基本意义是为同调的链赋予某种“量”。流形是局部上近似于欧几里得空间的拓扑空间。更精确的说,n-流形上的每一点都有一个同胚于n维欧式空间的邻域。举例来说,直线和圆都是一维流形,但数字8则不是。二维流形也称作曲面。二维流形的例子有平面、球面和环面等可看作三维空间中的物体的对象,但也包括克莱因瓶和实射影平面等不可看作三维空间里的物体,而必须看作四维空间里的物体的对象。'纽结理论是对(数学意义上的)纽结的研究。虽然纽结的概念是受现实生活中的绳结启发,对数学家而言“绳结”的两端是粘连在一起的,因而不能解开。在数学上,纽结的精确定义为圆在三维欧几里得空间R3的嵌入。若一个纽结能由另一个纽结通过对R3变形而得到(亦称环境同痕),我们就将其视为同一个纽结。这样的对环境的变换相当于对一个线圈进行连续操作,但避免剪开线圈或使线圈穿过自身。单纯复形是拓扑空间的一类,由点、线段、三角形等单纯形“粘合”而成。单纯复形不应当与范畴同伦论中的单纯集合混淆。单纯形在组合学中对应于抽象单纯形。CW复形是一种拓扑空间,由J.H.C.怀特海德为迎合同伦论的需要而引入。这类空间比单纯形有更良好的范畴学性质,且仍旧保留其组合学的本质,因此计算方面的考虑没有被忽略。这里的目标是取拓扑空间然后把它们进一步分成范畴或分类。该课题的旧称之一是组合拓扑,蕴含着将重点放在如何从更简单的空间构造空间X的意思。现在应用于代数拓扑的基本方法是通过函子,把空间映射到相应的代数范畴上。例如,通过一种保持空间的同胚关系的方式映射到群上。实现这个目标的主要方法是通过基本群,或者更一般的同伦论,和同调及上同调群。基本群给了我们关于拓扑空间结构的基本信息,但它们经常是非交换的,可能很难使用。(有限)单纯复形的基本群的确有有限表示。另一方面来讲,同调和上同调群是交换群,并且在许多重要情形下是有限生成的。有限生成交换群有完整的分类,并且特别易于使用。通过使用有限生成可交换群可以立刻得出几个有用的结论。单纯复形的n-阶同调群的自由阶等于n-阶贝蒂数(Betti number),所以可以直接使用单纯复形的同调群来计算它的欧拉示性数。作为另外一个例子,闭流形的最高维的积分上同调群可以探测可定向性:该群同构于整数或者0,分别在流形可定向和不可定向时。这样,很多拓扑信息可以在给定拓扑空间的同调中找到。在只定义在单纯复形的单纯同调之上,还可以使用光滑流形的微分结构来通过德拉姆上同调或Čech上同调或层上同调来研究定义在流形上的微分方程的可解性。德拉姆证明所有这些方法是相互关联的,并且对于闭可定向流形,通过单纯同调得出的贝蒂数和从德拉姆上同调导出的是一样的。一般来讲,所有代数几何的构造都是函子式的:概念范畴,函子和自然变换起源于此。基本群,同调和上同调群不仅是两个拓扑空间同胚时的不变量;而且空间的连续映射可以导出所相关的群的一个群同态,而这些同态可以用于证明映射的不存在性(或者,更深入的,存在性)。代数拓扑的经典应用包括:代数拓扑中最著名的问题之一是庞加莱猜想,它已经由俄国数学家格里戈里·佩雷尔曼于2003年解决。同伦论领域包含了很多悬疑,如表述球面的同伦群的正确方式等。
相关
- 460–519医学导航: 呼吸系统解剖(n, x, l, c)/生理/发育病理(c, p)/先天/肿瘤, 症状/人名体征, 创伤手术, 药品(R1/2/3/5/6/7)
- 布夏氏结节布夏氏结节(英语:Bouchard's nodes)是近端指骨关节(手指或脚趾中间的关节)上坚硬的骨头增生或胶状囊肿。常见于手部患有骨关节炎的患者,是由关节软骨钙化增生(英语:bone spur))的骨刺
- 国际土壤年国际土壤年,联合国第68届会议决议声明中,订定12月5日定为“国际土壤日”,并宣布2015年为“国际土壤年”(International Year of Soils)。该目的是提高认识全世界土壤粮食安全的重
- 加拿大威士忌加拿大威士忌(Canadian Whisky),是一种只在加拿大制造的清淡威士忌。原料上,虽然加拿大威士忌常常被认为是一种用裸麦(黑麦)制造的威士忌,但实际上加拿大威士忌是不折不扣的谷物威
- 后法兰西王国法兰西王国(法语:Royaume de France或法语:Royaume des Français)是一个短暂的君主立宪王国,自1791年9月3日法王路易十六签署1791年宪法至1792年9月21日废除君主制为止。理论上,
- 塔特姆爱德华·劳里·塔特姆(Edward Lawrie Tatum,1909年12月14日-1975年11月5日),美国遗传学家。他与乔治·韦尔斯·比德尔发现基因受到特定化学过程的调控而获得1958年诺贝尔生理学或
- 椴树属椴树属(学名:Tilia)植物统称椴树,属于锦葵目锦葵科椴树亚科,旧时分类于椴树科(Tiliaceae)或田麻科。椴树是落叶乔木,高可达30米,直径可达1米;单叶互生,常有星状毛或单毛,有锯齿或缺齿,通
- 螳螂螳螂(Mantis)一词泛称螳螂目(Mantodea)下的昆虫,目前共计超过2400种(英语:List of mantis genera and species),分布于15科、约430属当中,其中种类数量最多的科为螳螂科(英语:Mantidae)。
- 腐烂分解作用,又称腐烂、腐败,是指动物蛋白质及其有关之有机物分解成无机物,而且回到大自然物质循环的过程,特别是由缺氧微生物和腐化细菌。分解是一个大自然经常进行且非常重要的过
- 乙酸乙酯乙酸乙酯是乙酸中的羟基被乙氧基取代而生成的化合物,结构简式为CH3COOCH2CH3。乙酸乙酯是无色易燃易挥发的液体;有特殊香味;微溶于水,易溶于有机溶剂。乙酸乙酯可由乙酸、乙酸酐