电感

✍ dations ◷ 2025-08-02 01:53:04 #物理量,电路,电动力学

电感(Inductance)是闭合回路的一种属性,即当通过闭合回路的电流改变时,会出现电动势来抵抗电流的改变。如果这种现象出现在自身回路中,那么这种电感称为自感(self-inductance),是闭合回路自己本身的属性。假设一个闭合回路的电流改变,由于感应作用在另外一个闭合回路中产生电动势,这种电感称为互感(mutual inductance)。电感以方程表达为

其中, E {\displaystyle {\mathcal {E}}} 是电动势, L {\displaystyle L} 是电感, i {\displaystyle i} 是电流, t {\displaystyle t} 是时间。

术语“电感”是1886年由奥利弗·赫维赛德命名。通常自感是以字母“L”标记,这可能是为了纪念物理学家海因里希·楞次的贡献。互感是以字母“M”标记,是其英文(Mutual Inductance)的第一个字母。采用国际单位制,电感的单位是亨利(henry),标记为“H”,是因美国科学家约瑟·亨利命名。1 H = 1 Wb/A。

电感器是专门用在电路里实现电感的电路元件。螺线管是一种简单的电感器,指的是多重卷绕的导线(称为“线圈”),内部可以是空心的,或者有一个金属芯。螺线管的电感是自感。变压器是两个耦合的线圈形成的电感器,由于具有互感属性,是一种基本磁路元件。在电路图中电感的电路符号多半以L开头,例如,L01、L02、L100、L201等。

应用麦克斯韦方程组,可以计算出电感。很多重要案例,经过简化程序后,可以被解析。当涉及高频率电流和伴随的集肤效应,经过解析拉普拉斯方程,可以得到面电流密度与磁场。假设导体是纤细导线,自感仍旧跟导线半径、内部电流分布有关。假若导线半径超小于其它长度尺寸,则这电流分布可以近似为常数(在导线的表面或体积内部)。

如右图所示,流动于闭合回路的含时电流 i ( t ) {\displaystyle i(t)} 所产生的含时磁通量 Φ ( i ) {\displaystyle \Phi (i)} ,根据法拉第电磁感应定律,会促使闭合回路本身出现感应电动势 E {\displaystyle {\mathcal {E}}}

其中, N {\displaystyle N} 是闭合回路的卷绕匝数。

设定电感 L {\displaystyle L}

则感应电动势与含时电流之间的关系为

由此可知,一个典型的电感元件中,在其几何与物理特性都固定的状况下,产生的电压 v {\displaystyle v} 为:

电感的作用是抵抗电流的变化,但是这种作用与电阻阻碍电流的流动是有区别的。电阻阻碍电流的流动的特征是消耗电能,而电感则纯粹是抵抗电流的变化。当电流增加时电感抵抗电流的增加;当电流减小时电感抵抗电流的减小。电感抵抗电流变化的过程并不消耗电能,当电流增加时它会将能量以磁场的形式暂时储存起来,等到电流减小时它又会将磁场的能量释放出来,其效应就是抵抗电流的变化。

如右图所示,流动于闭合回路1的含时电流 i 1 ( t ) {\displaystyle i_{1}(t)} ,会产生磁通量 Φ 2 ( t ) {\displaystyle \Phi _{2}(t)} 穿过闭合回路2,促使闭合回路2出现感应电动势 E 2 {\displaystyle {\mathcal {E}}_{2}} 。穿过闭合回路2的磁通量和流动于闭合回路1的含时电流,有线性关系,称为互感 M 21 {\displaystyle M_{21}} ,以方程表达为。

计算互感,可使用纽曼公式(Neumann formula):

其中, μ 0 {\displaystyle \mu _{0}} 是磁常数, C 1 {\displaystyle \mathbb {C} _{1}} 是闭合回路1, C 2 {\displaystyle \mathbb {C} _{2}} 是闭合回路2, X 1 {\displaystyle \mathbf {X} _{1}} 是微小线元素 d 1 {\displaystyle \mathrm {d} {\boldsymbol {\ell }}_{1}} 的位置, X 2 {\displaystyle \mathbf {X} _{2}} 是微小线元素 d 2 {\displaystyle \mathrm {d} {\boldsymbol {\ell }}_{2}} 的位置。

由此公式可见,两个线圈之间互感相同: M 12 = M 21 {\displaystyle M_{12}=M_{21}} ,且互感是由两个线圈的形状、尺寸和相对位置而确定。

穿过闭合回路2的磁通量 Φ 2 ( t ) {\displaystyle \Phi _{2}(t)}

其中, S 2 {\displaystyle \mathbb {S} _{2}} 是边缘为 C 2 {\displaystyle \mathbb {C} _{2}} 的任意曲面, d a 2 {\displaystyle \mathrm {d} \mathbf {a} _{2}} 是微小面元素。

改用磁矢势 A 1 {\displaystyle \mathbf {A} _{1}} 计算:

其中, 2 {\displaystyle \nabla _{2}} 是对于变矢量 X 2 {\displaystyle \mathbf {X} _{2}} 的偏微分。

应用斯托克斯公式,可以得到

磁矢势 A 1 ( X 2 , t ) {\displaystyle \mathbf {A} _{1}(\mathbf {X} _{2},t)} 的定义式为

磁通量与流动于闭合回路1 C 1 {\displaystyle \mathbb {C} _{1}} 的电流 i 1 {\displaystyle i_{1}} 的关系式为

所以,互感为

这方程称为纽曼公式(Neumann formula)。注意到对换闭合回路 C 1 {\displaystyle \mathbb {C} _{1}} C 2 {\displaystyle \mathbb {C} _{2}} 不会改变结果, M 21 = M 12 {\displaystyle M_{21}=M_{12}} ,因此,可以以变数 M {\displaystyle M} 统一代表。

类似地,穿过闭合回路1的磁通量 Φ 1 ( t ) {\displaystyle \Phi _{1}(t)}

除去所有下标,令 C {\displaystyle \mathbb {C} } C {\displaystyle \mathbb {C} '} 代表同一闭合回路,自感以方程表示为

X 1 = X 1 {\displaystyle \mathbf {X} _{1}=\mathbf {X} '_{1}} 时,这积分可能会发散,需要特别加以处理。另外,若假设闭合回路为无穷细小,则在闭合回路附近,磁场会变得无穷大,磁通量也会变得无穷大,所以,必须给予闭合回路有限尺寸,设定其截面半径 r 0 {\displaystyle r_{0}} 超小于径长 0 {\displaystyle \ell _{0}}

有很多种方法可以化解这困难。例如,令 C {\displaystyle \mathbb {C} } 为闭合回路的中心曲轴,令 C {\displaystyle \mathbb {C} '} 为闭合回路的表面,则 X 1 X 1 {\displaystyle \mathbf {X} _{1}\neq \mathbf {X} '_{1}} ,这积分就不会发散了。

将前面论述加以推广,思考 K {\displaystyle K} 条闭合回路,设定第 k {\displaystyle k} 条闭合回路的卷绕匝数为 N k {\displaystyle N_{k}} ,载有电流 i k {\displaystyle i_{k}} ,则其磁链 N k Φ k {\displaystyle N_{k}\Phi _{k}}

其中, Φ k {\displaystyle \Phi _{k}} 是穿过第 k {\displaystyle k} 条闭合回路的磁通量, L k , k = L k {\displaystyle L_{k,k}=L_{k}} 是自感, L k , n = M k , n , k n {\displaystyle L_{k,n}=M_{k,n},k\neq n} 是互感。

由于第 n {\displaystyle n} 条闭合回路对于磁通量 Φ k {\displaystyle \Phi _{k}} 的总贡献是卷绕匝数乘以电流,即 N n i n {\displaystyle N_{n}i_{n}} ,所以, L k , n {\displaystyle L_{k,n}} 与乘积 N k N n {\displaystyle N_{k}N_{n}} 成正比。

从法拉第电磁感应定律,可以得到

其中, v k {\displaystyle v_{k}} 是第 k {\displaystyle k} 条闭合回路的感应电压。

k {\displaystyle k} 条闭合回路的电功率 p k {\displaystyle p_{k}}

假设原先所有电流为零,即 i 1 = i 2 = = i K = 0 {\displaystyle i_{1}=i_{2}=\dots =i_{K}=0} ,储存于所有闭合回路的总磁能为 0 {\displaystyle 0} 。现在,将第一条闭合回路的电流 i 1 {\displaystyle i_{1}} 平滑地从 0 {\displaystyle 0} 增加到 I 1 {\displaystyle I_{1}} ,同时保持其它闭合回路的电流不变,则储存于第一条闭合回路的磁能 W 1 {\displaystyle W_{1}}

然后,将第二条闭合回路的电流 i 2 {\displaystyle i_{2}} 平滑地从 0 {\displaystyle 0} 增加到 I 2 {\displaystyle I_{2}} ,同时保持其它闭合回路的电流不变,则储存于第二条闭合回路的磁能 W 2 {\displaystyle W_{2}}

案照这方法继续地计算,储存于第 k {\displaystyle k} 条闭合回路的磁能 W k {\displaystyle W_{k}}

所以,当每一个闭合回路的电流都平滑地增加到其最终电流之后,储存于所有闭合回路的总磁能 W {\displaystyle W}

假设将 I n {\displaystyle I_{n}} I k {\displaystyle I_{k}} 的数值交换,总磁能 W {\displaystyle W} 不会改变。满足可积分条件 2 W I n I k = 2 W I k I n {\displaystyle {\frac {\partial ^{2}{W}}{\partial I_{n}\partial I_{k}}}={\frac {\partial ^{2}{W}}{\partial I_{k}\partial I_{n}}}} ,必需要求 L k , n = L

相关

  • 胸膜腔胸膜腔(pleural cavity)为壁层胸膜和脏层胸膜之间反折包围的一对空腔,左右胸腔各有一个。脏层胸膜紧紧被覆于肺脏表面,而壁层胸膜则紧贴于胸壁(英语:thoracic wall)上。胸膜腔内含
  • 现在时现在时(Present tense),也常称为现在式,是一种时态,用于说话时点所正在发生事件的语法意义。这种语法意义还能表示:有二种共同的类型现在时被发现在多数印欧语系:现在时和现在虚拟
  • 高雄市美术家联展高雄市美术家联展是台湾高雄市政府所主办的年度文化展览,始于1986年。是当地重要的艺术活动,主要由高雄地区艺术家参与。联展地点除2007年以前数年曾于高雄市立美术馆举办外,其
  • 国际义人纳粹集中营转移营比利时:布伦东克堡垒 · 梅赫伦转移营法国:居尔集中营 · 德朗西集中营意大利:波尔查诺转移营荷兰:阿默斯福特集中营 · 韦斯特博克转移营挪威:法斯塔德集中营部
  • M8装甲车M8装甲车是美国福特汽车于二战时期生产的六轮传动装甲车,主要装备欧洲和远东地区美军及英军,英军把M8取名为“灰狗”(Greyhound)。直至2006年,一些第三世界国家仍有M8服役。1941
  • 扎耶德·本·苏尔坦·阿勒纳哈扬等等扎耶德·本·苏尔坦·阿勒纳哈扬(阿拉伯语:الشيخ زايد بن سلطان أل نهيان‎;1918年5月6日-2004年11月2日),阿拉伯联合酋长国前总统,被本国人尊为“国父
  • NHK滨松支局NHK滨松支局,是日本放送协会位于静冈县滨松市的支局,也是负责主管当地事务的放送支局。
  • 马拉盖塔椒马拉盖塔椒 (学名: var. )是一种产于巴西巴伊亚州的一种辣椒 (注意不要与姜科的天堂椒 )混淆。此种果实未熟绿色,成熟时转红,长2英寸。辣度为60,000 至 100,000史高维尔单位。常用
  • 呈麟呈麟(1788年-?)字玉书,,号绂堂,满洲正蓝旗人,清朝政治人物、进士出身。嘉庆十九年,登二甲进士。后任翰林院庶吉士,道光二年至七年任兵部郎中,七年至八年管理杀虎口税务,四川永宁道,十九年
  • 堀内恒夫球员监督堀内恒夫(1948年1月16日-)为日本的棒球选手、政治家,现参议院议员(当选一期)。出生于山梨县甲府市。他曾效力于日本职棒读卖巨人等,守备位置为投手,1983年退休,生涯通算203胜