驰豫时间

✍ dations ◷ 2025-11-27 15:27:29 #天文学的时间

弛豫时间(Relaxation Time),即达到热动平衡所需的时间。

在经典物理中,电场中的粒子可以在电场作用下作加速运动,即 a = q E / m {\displaystyle a=qE/m}

然而,自由电子在外电场作用下在晶体内运动却不能满足这个简单关系。首先,自由电子的静止质量和运动质量不同,公式中的质量为爱因斯坦的相对质量 m {\displaystyle m^{*}} ; 另外,电子在晶体内最终会与原子发生碰撞,改变运动状态。这个碰撞会趋于降低电子从外电场获得的加速度,但电子的最终速度始终是增加。

每次碰撞之间的时间间隔平均,我们称为驰豫时间г;每次碰撞的速度增量平均,我们称为漂移速度,即 v d {\displaystyle v_{d}} =1/2at=1/2(qEг/ m {\displaystyle m^{*}} )。

其中 v d {\displaystyle v_{d}} 为漂移速度, m {\displaystyle m^{*}} 为电子相对质量

相关

  • 医疗系统医疗系统(health system)也称为医疗照护系统(health care system),是由人、机构及资源所组成的组织,目的在于提供医疗卫生服务,符合目标人群的健康需求。世界上有许多的不同的医疗
  • Unicode中的音标符号Unicode通过已有的书写系统和添加带音标字符的额外的区块支持一些音标文字和标记法。这些语音学符号产生于已有的文字,通常是拉丁文、希腊文或西里尔文。Unicode中没有专门的
  • 三角形-正方形镶嵌在几何学中,三角形-正方形镶嵌是指由三角形与正方形组成的镶嵌。包含了两种半正镶嵌图和七种拟半正镶嵌图(不均匀半正镶嵌图)二阶正方形-三角形镶嵌是一种复合正多边形密铺,其为
  • 亚当·戈米利亚当·戈米利(英语:Adam Gemili,波斯语:آدام جمیلی‎,1993年10月6日-)生于伦敦,是一名英国男子田径运动员,主攻短跑项目,曾就读于东伦敦大学。他拥有伊朗血统和摩洛哥血统。
  • 马诺利斯·卡洛米里斯马诺利斯·卡洛米里斯(希腊语:Μανώλης Καλομοίρης,1883年12月24日-1962年4月3日),希腊作曲家。早年曾到维也纳学习,归国后创办了国家音乐学院,是希腊民族乐派的创
  • 舞出我人生:街舞《舞出我人生:街舞》(英语:)是一部2008年上映的美国舞蹈电影。故事主角查斯是个顶尖的舞者,力求革新的他,感到现有的练舞模式与技术创新有限,在得知一个名为“街头尬舞”的地下街舞
  • 俞吾金俞吾金(1948年6月-2014年10月31日),浙江萧山人,中华人民共和国哲学家。1977年,考入复旦大学哲学系,1984年留系任教,1992年获哲学博士学位,1993年晋升为教授,培养当时复旦大学辩论队,担
  • 爨琛爨琛(?-?),又作爨深,晋朝建宁郡(今云南省曲靖市)叟人,官员。永嘉年间为兴古郡太守。成汉李雄在太宁元年(323年)南侵宁州,爨琛与姚岳奉刺史王逊之命,阻击于堂狼。李雄于咸和八年(333年)派李寿
  • 军神山本元帅与联合舰队《军神山本元帅与联合舰队》(英语:Admiral Yamamoto and the Allied Fleets)是1956年上映的日本战争电影,由新东宝公司制作。
  • 杨本杨本,明朝军事人物。杨本为太学出身,精通各类禽遁术,后应募授锦衣镇抚,跟从李景隆讨伐朱棣有功,被李景隆嫉妒而不被重用。之后杨本弹劾李景隆丧师辱国,遂以孤军独出,后被捉捕,关在北