首页 >
RNA剪接
✍ dations ◷ 2024-12-22 20:53:51 #RNA剪接
剪接(英语:splicing,又称拼接),是一种基因重组现象,在分子生物学中,主要是指细胞核内基因信息在转录过程中或是在转录过后的一种修饰,即将内含子移除及合并外显子——内含子与外显子的名称是通用于编码基因的DNA及其转录后的RNA——是真核生物的前mRNA变成mRNA的过程之一。剪接过程是剪接体内核糖核酸(RNA)核苷酸之间的一连串生化反应,并由剪接体内小核核糖蛋白(snRNP)中的snRNA负责催化并作用。此外,也有一些类型不需外在催化物质,而是在特定二价金属离子存在的情况下,以RNA自我催化的方式进行剪接,如第一型或第二型内含子 (group-I or group-II intron)或核酸酶(ribozyme)。这也是真核生物与原核生物的区别之一(请参看顺反子)。成熟的mRNA会接着进行蛋白质生物合成中的翻译,以产生蛋白质,称翻译作用。RNA剪接可以有多种的方式。剪接的型式以内含子的结构及剪接所需的剪接因子而定。此外,RNA剪接还分为分子内 (intramolecular) 剪接 (cis splicing) 以及分子间 (intermolecular) 剪接 (trans splicing)。内含子经常存在于真核生物的蛋白质编码基因(coding gene)中,也存在于rRNA、tRNA以及许多病毒的基因组内。在内含子里,需要有 5' 剪接位点(5' splice site)、3' 剪接位点(3' splice site)及剪接分枝位点(branch point)来进行剪接。剪接是由剪接体(Spliceosome)来催化,它是以五个不同的小核核糖核酸 (snRNAs) 以及不下于一百个蛋白质所组成的大型核糖核酸蛋白质复合物,称为小核核糖蛋白(snRNP)所组成。小核核糖蛋白的 RNA 会与内含子行杂交作用(hybridization),并且参与剪接的催化反应。自剪接(英语:self-splicing)出现在稀少的内含子组成核酸酶,核酸酶在只有RNA的情况下代替了剪接体的功能。自剪接的内含子有三种,称为第一型、第二型及第三型。自剪接型内含子以与剪接体类似的方式进行剪接,但不需要任何蛋白质。这种相似性使人相信这些内含子与剪接体在演化过程上有着关连。自剪接亦可能是非常古老,且可能出现在一个还未有蛋白质的核糖核酸世界。虽然以下两种剪接可以在没有蛋白质的情况下进行,但依然会额外的使用5个RNA分子(snoRNAs)及超过50多个蛋白质,并水解多个三磷酸腺苷(ATP)分子。使用 ATP 是要提高剪接mRNA的准确性,避免出现错误。以下两次转酯化是第一型内含子(英语:group I intron)自剪接的特征:以下是第二型内含子(英语:group II intron)自剪接的特征(与第I型相同是两次交酯化):第三型内含子(英语:group III intron)的自剪接过程则类似第二型内含子。以下为其他特征:转运RNA(tRNA)剪接是另一种较罕见的剪接方法,但是却经常在 tRNA 出现。它的剪接反应涉及与剪接体或自剪接不同的生物化学过程。核糖核酸酶切开RNA,而核酸连接酶 (RNA ligase) 则将外显子接合。这种剪接方式同样不需要任何RNA分子来催化,而是一种全由蛋白质催化和作用的反应。整个过程中并未有交酯化/转酯化作用。在所有生物界或生物域中都有出现剪接,剪接的幅度及类型在主要的生物门中都可以非常不同。真核生物中RNA剪接好发于mRNA及一些非编码RNA。原核生物则很少剪接,但多是非编码RNA。两种生物最大的差异是原核生物没有剪接体剪接途径。由于剪接体内含子并非在所有 生物种中得到保存,有人便因此质疑剪接体演化的起始点。现时有两种建议的模式:内含子先天存在理论及内含子后天衍生理论。剪接体剪接及自剪接涉及两个步骤的生物化学过程。两个步骤均需要在RNA间进行转酯化反应。但是tRNA剪接则没有交醋化/转酯化过程。剪接体及自剪接交酯化反应的发生有特定的次序。首先,一个在内含子的特定“剪接分枝位点”核苷酸会与这个内含子的第一个核苷酸产生转酯化反应,形成两个RNA分子,一个是“内含子套索”另一个则是内含子前的外显子。第二,第一个外显子最后的核苷酸会与第二个外显子的首个核苷酸产生转酯化反应,连接外显子并释放内含子套索。
而在真核生物中,需要多种的snRNP合作,其中包括U1.U2.U4.U5.U6snRNA的辅助.其中详细的机制为:在很多时候,剪接过程可以透过对同一个基因转录的相同pre-mRNA使用不同的剪接选择,产生不同的mRNA异构物(isoform),最后产生多种相似却又独特的蛋白质,或是产生出稳定性低的mRNA产物以达到调节基因表达的目的。而由于选择性剪接的存在而使基因组可以产生比基因数量还多许多倍的基因产物。例如抗体的制造。Pre-mRNA的剪接也并不是完美的。据估计,人体细胞中有约70%的基因会进行选择性剪接。而其中又有三分之二以上的剪接产物 (spliced transcripts) 因为剪接过程的不够精确、或是形成未成熟的终止密码子 (premature termination codon, PTC) 而造成该 RNA 的降解 (RNA degradation)。另有研究显示,剪接过程中的交酯化/转酯化反应在特定条件下是可逆的。这对于剪接反应如何维持或调结其精确性提供了新的思路,并对如何治疗因剪接错误而起的人类疾病提供了新方向。干扰 mRNA 剪接的实验可以透过将以吗啉基或肽核酸修饰之反义寡核苷酸结合在 snRNP 于 mRNA 上的结合位点、型成套索结的核苷酸分支点或剪接调控因子的结合位点上来作出修改。另外,籍由影响剪接调控因子在细胞的正常表现,或是在试管反应中控制调控因子的相对浓度,甚至是剪接体的相对浓度都能达成对 mRNA 剪接干扰的目的。内含子或外显子的突变可以阻碍剪接及从而影响蛋白质合成。一般的误差包括:PAB2、CFI及CFII)RNA剪接:
内含子 / 外显子 · snRNA · snRNP · 剪接体(次要剪切体(英语:Minor spliceosome)、U1(英语:U1 spliceosomal RNA)) · 选择性剪接 · 前体mRNA加工因子 (PLRG1、PRPF3、PRPF4、PRPF4B、PRPF6、PRPF8、PRPF18、PRPF19、PRPF31、PRPF38A、PRPF38B、PRPF39、PRPF40A及PRPF40B)
相关
- 内外肋间肌肋间肌即连接相邻两肋骨骨弓的肌肉。在呼吸过程中,每对肋骨间的肋间肌收缩,使肋骨向外并向上摇动。肋间肌与横膈一起运作,以将空气吸入肺中。如果做激烈的运动,则颈部和腹部的肌
- 姊妹群旁系群在支序分类学是指一个演化支上某个单系群最亲近的分类群,又称为姐妹群。如下图所示: .mw-parser-output table.clade{border-spacing:0;margin:0;font-size:100%;line-h
- 东北部美国东北部为美国人口调查局所定义的美国地区。美国东北部北临加拿大,西临中西部,南接美国南部,东向大西洋。此区域乃美国工商业最发达的区域及都市化程度最高的区域,美国第一大
- 文化经济学文化经济学 是经济学的一个分支,研究文化对经济成果的影响。主要研究问题包括文化是否影响经济成果、文化对经济结果影响的程度,以及它与社会制度之间的关系。主题包括艺术和
- 木材木材是能够次级生长(英语:Secondary growth)的植物(如乔木和灌木)所形成的木质化组织。是多孔纤维状的组织。乔木和灌木在初生生长结束后,根茎中的维管形成层开始活动,向外发展出韧
- 悬浮固体悬浮固体(英语:Suspended solids、SS;日语:浮游物质)指的是悬浮在水中的固态粒子,可能是以胶体方式存在,也可以是因为水流速度而悬浮在水中。悬浮固体是用来判断水液品质(英语:water
- 烟雾烟雾(英语:smog)是一种空气污染现象。这个词的原意是指在英国伦敦有时别称“豌豆汤雾(英语:Pea soup fog)”的烟霞,是伦敦从19世纪到20世纪中期的严重问题。这种烟雾是在城市内燃烧
- 严重败血症败血症(拉丁语:Sepsis)(中国大陆译为脓毒症)指的是由于感染所引起的全身性发炎的严重疾病。常见的临床症状包括发烧、呼吸频率和心跳加速,以及意识不清。有时患者也会发生特定的
- 米书拿《米书拿》(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Taam
- 履历履历(英式英语:Curriculum Vitae(英语:Curriculum Vitae),简称CV;美式英语:Résumé(英语:Résumé)),是对个人教育、工作经历的书面介绍,是求职者通向面试阶段的重要一环。Resume是在申