原子轨道线性组合

✍ dations ◷ 2025-11-28 03:01:20 #原子轨道线性组合
原子轨域线性组合(Linear combination of atomic orbitals,或者简写为LCAO),是量子化学中用于求解分子轨域的一种方法,这种方法是通过对原子轨域进行线性叠加来构造分子轨域。因为它属于分子轨域方法的一种,所以又称原子轨域线性组合的分子轨域方法,或者叫LCAO-MO。它于1929年由Sir John Lennard-Jones引入用于描述元素周期表第一行上原子构成的双原子分子的成键,并且经由Ugo Fano进行了扩展。在量子力学里,原子的电子排布由波函数来描述。从数学上来看,这些波函数构成了函数基组。在化学反应过程中,轨道波函数会发生改变,根据原子所参与形成的化学键的类型,电子云的形状会相应改变。LCAO的数学形式为:其中 Ψ i {displaystyle Psi _{i}} 为第 i {displaystyle i} 条分子轨道,它被表示为 n {displaystyle n} 个原子基函数(原子轨道) φ j {displaystyle varphi _{j}} 的线性叠加。系数 c j i {displaystyle c_{ji}} 表示了第 j {displaystyle j} 条原子轨道对该分子轨道 i {displaystyle i} 的贡献大小。作为基函数的原子轨道 φ j {displaystyle varphi _{j}} 通常是在(核)中心场作用下的单电子波函数。所使用的基函数通常是类氢原子,因为类氢原子波函数已知有解析的表达式。当然,基函数也可以选择如高斯函数的其他形式。通过变分法求系统总能量的最低值,人们可以获得线性展开式前每项的系数 c j i {displaystyle c_{ji}} 。这种定量方法称为Hartee-Fock方法。但随着计算化学的发展,人们一般不用LCAO做波函数的实际优化,只用其作定性估测,以衡量或预测其他计算方法的结果。假设分子系统的哈密顿量为 H ^ {displaystyle {hat {H}}} ,其定态薛定谔方程为 H ^ Ψ = E Ψ {displaystyle {hat {H}}Psi =EPsi } 。 其中 Ψ {displaystyle Psi } 为分子轨道(分子波函数), E {displaystyle E} 分子体系的能量。 LCAO的基本思想就是用原子轨道 φ {displaystyle varphi } 的线性组合来表示分子轨道 Ψ {displaystyle Psi } :将其代入到定态薛定谔方程中,所得到的线性方程组系统为久期方程。注意,在LCAO中, ⟨ φ i | φ k ⟩ ≠ δ i , k {displaystyle leftlangle {varphi _{i}}|{varphi _{k}}rightrangle neq delta _{i,k}} ,这是因为这里的 i , k {displaystyle i,k} 代表的不再是同一原子的波函数,而是处于不同位置的原子的波函数,它们一般不满足正交归一性。 S i k {displaystyle S_{ik}} 与原子间的位置相关,原子间相距近,则波函数间交叠大;若原子相距很远, S i k {displaystyle S_{ik}} 则趋于零,因此 S i k {displaystyle S_{ik}} 被称作重叠积分(overlap integral)。记双原子分子中两个原子的波函数分别为 φ A {displaystyle varphi _{A}} 与 φ B {displaystyle varphi _{B}} ,根据LCAO,分子波函数可以写作线性组合:代入到定态薛定谔方程 H ^ Ψ = E Ψ {displaystyle {hat {H}}Psi =EPsi } 中,分别用两个原子波函数与上式做内积,展开,因此得到,相应的久期方程矩阵形式为线性组合的系数由此可求得。双原子分子体系的能量 E {displaystyle E} 可由两个方程之比求得,H 2 + {displaystyle _{2}^{+}} 是由两个质子与一个电子组成的同核双原子分子,是最简单的分子形式。设想H 2 + {displaystyle _{2}^{+}} 的分子轨道可以由两个氢原子的基态波函数1s线性叠加而成。此时满足 H A A = H B B = α , H A B = H B A = β , S A B = S B A = S {displaystyle {H_{AA}}={H_{BB}}=alpha ,{H_{AB}}={H_{BA}}=beta ,{S_{AB}}={S_{BA}}=S} ,其中α为库仑积分,β为交换积分,S为重叠积分。于是,代入用于求能量的比值式:可得到两个可能的能量值;回代入久期方程,可得到系数 c A {displaystyle c_{A}} 与 c B {displaystyle c_{B}} 的关系。因此,令 c A = c B = c {displaystyle c_{A}=c_{B}=c} ,可得到两个分子轨道c可由归一化条件最终确定。已知氢原子基态波函数(1s)在空间中表示为 e − r a 0 {displaystyle e^{-{frac {mathbf {r} }{a_{0}}}}} ,考虑二维情况 r = ( x , y ) {displaystyle mathbf {r} =(x,y)} ,设一个处于 x = 0 {displaystyle x=0} 处的氢原子基态波函数为 φ A ( r ) = e − x 2 + y 2 a 0 {displaystyle varphi _{A}(mathbf {r} )=e^{-{frac {sqrt {x^{2}+y^{2}}}{a_{0}}}}} ,另一个处于 x = x 0 {displaystyle x=x_{0}} 处的氢原子基态波函数为 φ B ( r ) = e − ( x − x 0 ) 2 + y 2 a 0 {displaystyle varphi _{B}(mathbf {r} )=e^{-{frac {sqrt {(x-x_{0})^{2}+y^{2}}}{a_{0}}}}} ,对波函数按上面得到的分子轨道表达式进行线性叠加可得,

相关

  • 藻类藻类,又称作悬浮植物,包括数种不同类以光合作用产生能量的生物,其中有属于真核细胞的藻类,也有属于原核细胞的藻类。它们一般被认为是简单的植物,并且一些藻类与比较高等的植物有
  • 丙酸丙酸(propanoic acid),又称初油酸,是三个碳的羧酸和短链饱和脂肪酸,化学式为CH3CH2COOH。纯的丙酸是无色、腐蚀性的液体,带有刺激性气味。工业上丙酸是通过四羰基镍催化剂存在下
  • 中西部美国中西部(英语:Midwest)通常指的是美国地理上中北部的州,包括俄亥俄州、印第安那州、密歇根州、伊利诺伊州、威斯康星州、艾奥瓦州、肯萨斯州、密苏里州、明尼苏达州、内布拉
  • 东岸美国东岸,或称为大西洋海岸,是指美国的最东部的海岸地区,东向面临大西洋,北边为加拿大,南边为墨西哥湾。此区域通常包括以前北美十三殖民地的范围,现在则由北到南包括缅因州、新罕
  • 人猿总科猿是灵长目人猿总科(学名:Hominoidea)动物的通称,包括两个科。虽然人们常把猿猴并称,有时候将猴也称为猿,而猿有时也会称做是猴,不过他们在生物学上是不同的动物。两者的主要区别在
  • 苏恩·伯格斯特龙苏恩·伯格斯特龙(瑞典语:Sune Karl Bergström,1916年1月10日-2004年8月15日),瑞典生物化学家。于1975年成为诺贝尔基金会的主席。并于同年与本格特·萨米尔松(Bengt I. Samuelsso
  • 汉斯·德默尔特汉斯·格奥尔格·德默尔特(德语:Hans Georg Dehmelt,1922年9月2日-2017年3月7日),德国-美国物理学家,1989年获诺贝尔物理学奖。汉斯·德默尔特出生于德国格尔利茨,在柏林长大的。194
  • 贝里学院贝里学院(Berry College)是位于美国乔治亚州弗洛伊德县贝里山(Mount Berry)地区的一所私立四年制文理学院,距离县治罗马不远。它于1902年由美国教育家玛莎·贝里(Martha Berry)创立
  • 康定斯基康定斯基(俄语:Василий Кандинский,即通用译法(音译)下的“瓦西里·坎金斯基”或译为“康定斯基”,“康定斯基”为本人物俄语人名传统特例,瓦西里1866年12月16日-1
  • 远洋杆菌属远洋杆菌属(Pelagibacter),目前仅包括遍在远洋杆菌(P. ubique)一个种,可能是地球上数量最多的细菌(估算数量级有1028)。早在1990年,就已在马尾藻海中得到属于α-变形菌的rRNA序列,此后