原子轨道线性组合

✍ dations ◷ 2025-09-16 04:19:32 #原子轨道线性组合
原子轨域线性组合(Linear combination of atomic orbitals,或者简写为LCAO),是量子化学中用于求解分子轨域的一种方法,这种方法是通过对原子轨域进行线性叠加来构造分子轨域。因为它属于分子轨域方法的一种,所以又称原子轨域线性组合的分子轨域方法,或者叫LCAO-MO。它于1929年由Sir John Lennard-Jones引入用于描述元素周期表第一行上原子构成的双原子分子的成键,并且经由Ugo Fano进行了扩展。在量子力学里,原子的电子排布由波函数来描述。从数学上来看,这些波函数构成了函数基组。在化学反应过程中,轨道波函数会发生改变,根据原子所参与形成的化学键的类型,电子云的形状会相应改变。LCAO的数学形式为:其中 Ψ i {displaystyle Psi _{i}} 为第 i {displaystyle i} 条分子轨道,它被表示为 n {displaystyle n} 个原子基函数(原子轨道) φ j {displaystyle varphi _{j}} 的线性叠加。系数 c j i {displaystyle c_{ji}} 表示了第 j {displaystyle j} 条原子轨道对该分子轨道 i {displaystyle i} 的贡献大小。作为基函数的原子轨道 φ j {displaystyle varphi _{j}} 通常是在(核)中心场作用下的单电子波函数。所使用的基函数通常是类氢原子,因为类氢原子波函数已知有解析的表达式。当然,基函数也可以选择如高斯函数的其他形式。通过变分法求系统总能量的最低值,人们可以获得线性展开式前每项的系数 c j i {displaystyle c_{ji}} 。这种定量方法称为Hartee-Fock方法。但随着计算化学的发展,人们一般不用LCAO做波函数的实际优化,只用其作定性估测,以衡量或预测其他计算方法的结果。假设分子系统的哈密顿量为 H ^ {displaystyle {hat {H}}} ,其定态薛定谔方程为 H ^ Ψ = E Ψ {displaystyle {hat {H}}Psi =EPsi } 。 其中 Ψ {displaystyle Psi } 为分子轨道(分子波函数), E {displaystyle E} 分子体系的能量。 LCAO的基本思想就是用原子轨道 φ {displaystyle varphi } 的线性组合来表示分子轨道 Ψ {displaystyle Psi } :将其代入到定态薛定谔方程中,所得到的线性方程组系统为久期方程。注意,在LCAO中, ⟨ φ i | φ k ⟩ ≠ δ i , k {displaystyle leftlangle {varphi _{i}}|{varphi _{k}}rightrangle neq delta _{i,k}} ,这是因为这里的 i , k {displaystyle i,k} 代表的不再是同一原子的波函数,而是处于不同位置的原子的波函数,它们一般不满足正交归一性。 S i k {displaystyle S_{ik}} 与原子间的位置相关,原子间相距近,则波函数间交叠大;若原子相距很远, S i k {displaystyle S_{ik}} 则趋于零,因此 S i k {displaystyle S_{ik}} 被称作重叠积分(overlap integral)。记双原子分子中两个原子的波函数分别为 φ A {displaystyle varphi _{A}} 与 φ B {displaystyle varphi _{B}} ,根据LCAO,分子波函数可以写作线性组合:代入到定态薛定谔方程 H ^ Ψ = E Ψ {displaystyle {hat {H}}Psi =EPsi } 中,分别用两个原子波函数与上式做内积,展开,因此得到,相应的久期方程矩阵形式为线性组合的系数由此可求得。双原子分子体系的能量 E {displaystyle E} 可由两个方程之比求得,H 2 + {displaystyle _{2}^{+}} 是由两个质子与一个电子组成的同核双原子分子,是最简单的分子形式。设想H 2 + {displaystyle _{2}^{+}} 的分子轨道可以由两个氢原子的基态波函数1s线性叠加而成。此时满足 H A A = H B B = α , H A B = H B A = β , S A B = S B A = S {displaystyle {H_{AA}}={H_{BB}}=alpha ,{H_{AB}}={H_{BA}}=beta ,{S_{AB}}={S_{BA}}=S} ,其中α为库仑积分,β为交换积分,S为重叠积分。于是,代入用于求能量的比值式:可得到两个可能的能量值;回代入久期方程,可得到系数 c A {displaystyle c_{A}} 与 c B {displaystyle c_{B}} 的关系。因此,令 c A = c B = c {displaystyle c_{A}=c_{B}=c} ,可得到两个分子轨道c可由归一化条件最终确定。已知氢原子基态波函数(1s)在空间中表示为 e − r a 0 {displaystyle e^{-{frac {mathbf {r} }{a_{0}}}}} ,考虑二维情况 r = ( x , y ) {displaystyle mathbf {r} =(x,y)} ,设一个处于 x = 0 {displaystyle x=0} 处的氢原子基态波函数为 φ A ( r ) = e − x 2 + y 2 a 0 {displaystyle varphi _{A}(mathbf {r} )=e^{-{frac {sqrt {x^{2}+y^{2}}}{a_{0}}}}} ,另一个处于 x = x 0 {displaystyle x=x_{0}} 处的氢原子基态波函数为 φ B ( r ) = e − ( x − x 0 ) 2 + y 2 a 0 {displaystyle varphi _{B}(mathbf {r} )=e^{-{frac {sqrt {(x-x_{0})^{2}+y^{2}}}{a_{0}}}}} ,对波函数按上面得到的分子轨道表达式进行线性叠加可得,

相关

  • 虫囊菌纲虫囊菌纲(学名:Laboulbeniomycetes)是子囊菌门的一个纲,约包含2000种物种,常寄生于陆生、水生昆虫或其他节肢动物。此类真菌的体积很小,子实体多为瓶状的子囊壳(perithecia),且大小多
  • 西亚/西南亚西亚,或称西南亚(英语:Southwest Asia,阿拉伯语:غرب آسيا‎),指亚洲的西南部,和中东有很大部分的重合。不过,中东是一定义不清的区域,包含非洲国家埃及,而西亚则是纯粹的地理学
  • 黄帝外经《黄帝外经》首见于《汉书》卷三十,艺文志第五,方技类之医经中,惟不见录经文。相关之书目为:《黄帝外经》三十九卷或三十七卷。另有《扁鹊外经》十二卷。又有《白氏外经》三十六
  • 中太古代中太古代是太古宙的第三个代,前一个是古太古代,后一个是新太古代,时间介于32~28亿年之间。这一段时期是以计时学定义,而非地球的特定岩层。在澳洲的化石纪录显示叠层石在这个年
  • 摇床摇床(英语:shaker),是一种在化学和生物实验室中常用的用于搅拌溶液的装置。 一个典型的摇床有一个可以由电动机驱动的能水平震动的面板。待搅拌的液体装在烧杯、广口瓶或锥形瓶
  • 银河银河星系(古称银河、天河、星河、天汉、银汉等),是一个包含太阳系 的棒旋星系。直径介于100,000光年至180,000光年。估计拥有1,000亿至4,000亿颗恒星,并可能有1,000亿颗行星。太
  • 马勒赫尔曼·约瑟夫·马勒(Hermann Joseph Muller,1890年12月21日-1967年4月5日),美国遗传学家及教育家。他因发现X射线诱导突变而获得1946年诺贝尔生理学或医学奖。多布然斯基-马勒
  • 荆州荆州,中国东汉末至唐朝时的州,前身为监察区荆州刺史部。早期幅员广袤,包括今天湖北、湖南二省的大部以及邻省的小部,后分置湘州等州,隋朝以后辖境仅限于今湖北省荆州市一带。西汉
  • 色氨酸操纵子色氨酸操纵子(英语:Tryptophan operon)是一种重要的操纵子,是联合使用或转录的一组基因,也是用来编码生成色氨酸的元件之一。色氨酸操纵子是在许多细菌存在,但首次在大肠杆菌中
  • XeOsub4/sub四氧化氙(化学式:XeO4)是稀有气体氙的氧化物之一,黄色晶体,溶于水生成高氙酸,溶于碱生成高氙酸盐。四氧化氙只在-35.9 °C以下稳定, 高于该温度时爆炸性分解为氙和氧气。四氧化氙