原子轨道线性组合

✍ dations ◷ 2025-04-25 09:15:19 #原子轨道线性组合
原子轨域线性组合(Linear combination of atomic orbitals,或者简写为LCAO),是量子化学中用于求解分子轨域的一种方法,这种方法是通过对原子轨域进行线性叠加来构造分子轨域。因为它属于分子轨域方法的一种,所以又称原子轨域线性组合的分子轨域方法,或者叫LCAO-MO。它于1929年由Sir John Lennard-Jones引入用于描述元素周期表第一行上原子构成的双原子分子的成键,并且经由Ugo Fano进行了扩展。在量子力学里,原子的电子排布由波函数来描述。从数学上来看,这些波函数构成了函数基组。在化学反应过程中,轨道波函数会发生改变,根据原子所参与形成的化学键的类型,电子云的形状会相应改变。LCAO的数学形式为:其中 Ψ i {displaystyle Psi _{i}} 为第 i {displaystyle i} 条分子轨道,它被表示为 n {displaystyle n} 个原子基函数(原子轨道) φ j {displaystyle varphi _{j}} 的线性叠加。系数 c j i {displaystyle c_{ji}} 表示了第 j {displaystyle j} 条原子轨道对该分子轨道 i {displaystyle i} 的贡献大小。作为基函数的原子轨道 φ j {displaystyle varphi _{j}} 通常是在(核)中心场作用下的单电子波函数。所使用的基函数通常是类氢原子,因为类氢原子波函数已知有解析的表达式。当然,基函数也可以选择如高斯函数的其他形式。通过变分法求系统总能量的最低值,人们可以获得线性展开式前每项的系数 c j i {displaystyle c_{ji}} 。这种定量方法称为Hartee-Fock方法。但随着计算化学的发展,人们一般不用LCAO做波函数的实际优化,只用其作定性估测,以衡量或预测其他计算方法的结果。假设分子系统的哈密顿量为 H ^ {displaystyle {hat {H}}} ,其定态薛定谔方程为 H ^ Ψ = E Ψ {displaystyle {hat {H}}Psi =EPsi } 。 其中 Ψ {displaystyle Psi } 为分子轨道(分子波函数), E {displaystyle E} 分子体系的能量。 LCAO的基本思想就是用原子轨道 φ {displaystyle varphi } 的线性组合来表示分子轨道 Ψ {displaystyle Psi } :将其代入到定态薛定谔方程中,所得到的线性方程组系统为久期方程。注意,在LCAO中, ⟨ φ i | φ k ⟩ ≠ δ i , k {displaystyle leftlangle {varphi _{i}}|{varphi _{k}}rightrangle neq delta _{i,k}} ,这是因为这里的 i , k {displaystyle i,k} 代表的不再是同一原子的波函数,而是处于不同位置的原子的波函数,它们一般不满足正交归一性。 S i k {displaystyle S_{ik}} 与原子间的位置相关,原子间相距近,则波函数间交叠大;若原子相距很远, S i k {displaystyle S_{ik}} 则趋于零,因此 S i k {displaystyle S_{ik}} 被称作重叠积分(overlap integral)。记双原子分子中两个原子的波函数分别为 φ A {displaystyle varphi _{A}} 与 φ B {displaystyle varphi _{B}} ,根据LCAO,分子波函数可以写作线性组合:代入到定态薛定谔方程 H ^ Ψ = E Ψ {displaystyle {hat {H}}Psi =EPsi } 中,分别用两个原子波函数与上式做内积,展开,因此得到,相应的久期方程矩阵形式为线性组合的系数由此可求得。双原子分子体系的能量 E {displaystyle E} 可由两个方程之比求得,H 2 + {displaystyle _{2}^{+}} 是由两个质子与一个电子组成的同核双原子分子,是最简单的分子形式。设想H 2 + {displaystyle _{2}^{+}} 的分子轨道可以由两个氢原子的基态波函数1s线性叠加而成。此时满足 H A A = H B B = α , H A B = H B A = β , S A B = S B A = S {displaystyle {H_{AA}}={H_{BB}}=alpha ,{H_{AB}}={H_{BA}}=beta ,{S_{AB}}={S_{BA}}=S} ,其中α为库仑积分,β为交换积分,S为重叠积分。于是,代入用于求能量的比值式:可得到两个可能的能量值;回代入久期方程,可得到系数 c A {displaystyle c_{A}} 与 c B {displaystyle c_{B}} 的关系。因此,令 c A = c B = c {displaystyle c_{A}=c_{B}=c} ,可得到两个分子轨道c可由归一化条件最终确定。已知氢原子基态波函数(1s)在空间中表示为 e − r a 0 {displaystyle e^{-{frac {mathbf {r} }{a_{0}}}}} ,考虑二维情况 r = ( x , y ) {displaystyle mathbf {r} =(x,y)} ,设一个处于 x = 0 {displaystyle x=0} 处的氢原子基态波函数为 φ A ( r ) = e − x 2 + y 2 a 0 {displaystyle varphi _{A}(mathbf {r} )=e^{-{frac {sqrt {x^{2}+y^{2}}}{a_{0}}}}} ,另一个处于 x = x 0 {displaystyle x=x_{0}} 处的氢原子基态波函数为 φ B ( r ) = e − ( x − x 0 ) 2 + y 2 a 0 {displaystyle varphi _{B}(mathbf {r} )=e^{-{frac {sqrt {(x-x_{0})^{2}+y^{2}}}{a_{0}}}}} ,对波函数按上面得到的分子轨道表达式进行线性叠加可得,

相关

  • 葡萄适葡萄适(英语:Lucozade)原为葛兰素史克药厂旗下产品,后售予三得利。该饮品于1927年由英国药剂师Mr. Hunter发明并推出。其中的成分是葡萄糖,命名为葡萄适。该饮料还有葡萄适Xtra和
  • 低聚果糖果寡糖(Fructooligosaccharides,通常简写作FOS,亦作oligofructose或oligofructan)是一种天然的寡糖,亦有作代糖使用。一般市面上采用果寡糖作糖浆,其甜度约为砂糖的30~50%左右。能
  • 推论在数学上,推论(也称为系、系理)指能够“简单明了地”从前述命题推出的论断,推论往往在定理后出现。如果命题B能够被简单明了的从命题A推导出,则称B为A的推论。推论、定理、命题等
  • 欧洲药典《欧洲药典》(European Pharmacopoeia)为欧洲药品质量检测的惟一指导文献。第9版收录了总论及个论共计3000篇,适用于38个欧洲国家,并在全球100多个国家使用,内容涉及各种化学物质
  • 生物心理学异常心理学 行为遗传学 生物心理学 心理药物学 认知心理学 比较心理学 跨文化心理学 文化心理学 差异心理学(英语:Differential psychology) 发展心理学 演化心理学 实验心理学
  • 地西卢定水蛭素(英语:Hirudin)从水蛭唾液中提取得到的一种含有65个氨基酸残基和3对二硫键的多肽,分子质量为7千道尔顿,水蛭素对凝血酶的抑制作用有着高度特异与高效性,可直接抑制凝血酶,阻
  • 条带状铁矿条状铁层(Banded Iron Formation,简称BIF),又名带状铁矿层、条带状铁矿、带状铁矿或缟状铁矿,是一类岩石的名称,它包含了铁的氧化物、硫化物、碳酸盐类矿物以及燧石,并以条状互层的
  • 查尔菲马丁·查尔菲(Martin Chalfie,1947年1月5日-),美国科学家,因为发现和研究绿色荧光蛋白而获得了2008年的诺贝尔化学奖。查尔菲在芝加哥长大,是吉他手伊莱·查尔菲(1910—1996)和服装店
  • 本尼维斯山本尼维斯山(英语:Ben Nevis、苏格兰盖尔语:Beinn Nibheis)是不列颠群岛最高的山峰。 它位于英国苏格兰西部的格兰扁山脉,毗邻高地的小镇威廉堡(Fort William)。作为英国本土最高的
  • iBamHI结构 / ECODBamHI(亦可写作BamH1)是一种常用的II型限制性核酸内切酶。BamHI最早取自淀粉芽孢杆菌(英语:Bacillus amyloliquefaciens)(Bacillus amyloliquefaciens)中。