K-L 转换

✍ dations ◷ 2025-12-08 03:10:14 #估计理论,概率论,信号处理,随机过程

K-L转换(Karhunen-Loève Transform)是建立在统计特性基础上的一种转换,它是均方差(MSE, Mean Square Error)意义下的最佳转换,因此在资料压缩技术中占有重要的地位。

K-L转换名称来自Kari Karhunen和Michel Loève。

K-L转换是对输入的向量x,做一个正交变换,使得输出的向量得以去除数据的相关性。

然而,K-L转换虽然具有均方差(MSE)意义下的最佳转换,但必须事先知道输入的讯号,并且需经过一些繁杂的数学运算,例如协方差(covariance)以及特征向量(eigenvector)的计算。因此在工程实践上K-L转换并没有被广泛的应用,不过K-L转换是理论上最佳的方法,所以在寻找一些不是最佳、但比较好实现的一些转换方法时,K-L转换能够提供这些转换性能的评价标准。

以处理图片为范例,在K-L转换途中,图片的能量会变得集中,有助于压缩图片,但是实际上,KL转算为input-dependent,即需要对每张输入图片存下一个转换机制,每张图都不一样,这在实务应用上是不实际的。

KL转换属于正交转换,其处输入讯号的原理如下:

对输入向量 x {\displaystyle \mathbf {x} } 做KL传换后,输出向量 X {\displaystyle \mathbf {X} } 之元素间( u 1 u 2 {\displaystyle u_{1}\neq u_{2}} , u 1 {\displaystyle u_{1}} u 2 {\displaystyle u_{2}} X {\displaystyle \mathbf {X} } 之元素的index)的相关性为零,即: E X ¯ ) ( X X ¯ ) ] = 0 {\displaystyle E-{\bar {X}})(X-{\bar {X}})]=0}

展开上式并做消去:

E X ] X ¯ X ¯ = 0 {\displaystyle EX]-{\bar {X}}{\bar {X}}=0}

如果 x ¯ = 0 {\displaystyle {\bar {x}}=0} ,因为KL转换式线性转换的关系, X ¯ = 0 {\displaystyle {\bar {X}}=0} ,则可以达成以下式,所以这里得输入向量 x {\displaystyle \mathbf {x} } 之平均值 x ¯ {\displaystyle {\bar {x}}} 需为 0 {\displaystyle 0} ,所以KLT是专门用于随机程序的分析:

E X ] = 0 {\displaystyle EX]=0}

其中 u 1 u 2 {\displaystyle u_{1}\neq u_{2}} ,即输出向量不同元素相关性为 0 {\displaystyle 0}

回到矩阵表示形式,令 K {\displaystyle \mathbf {K} } 为KL转换矩阵,使:

X = K x {\displaystyle \mathbf {X} =\mathbf {Kx} }

K {\displaystyle \mathbf {K} } x {\displaystyle \mathbf {x} } 表示 X {\displaystyle \mathbf {X} } 之covariance矩阵:

E = E = K E K T {\displaystyle E=E=\mathbf {K} E\mathbf {K} ^{T}}

因为 x ¯ = 0 {\displaystyle {\bar {x}}=0} E {\displaystyle E} 直接等于covariance矩阵:

E = K C K T {\displaystyle E=\mathbf {K} \mathbf {C} \mathbf {K} ^{T}}

其中 C {\displaystyle \mathbf {C} } x {\displaystyle \mathbf {x} } 之covariance矩阵。

如果要使 E X ] = 0 {\displaystyle EX]=0} ,则 E {\displaystyle E} 必须为对角线矩阵,即对角线上之值皆为 0 {\displaystyle 0} ,所以 K {\displaystyle \mathbf {K} } 必须将传换成对角线矩阵,即 K {\displaystyle \mathbf {K} } 的每一行皆为 C {\displaystyle \mathbf {C} } 之特征向量。

K-L转换的目的是将原始数据做转换,使得转换后资料的相关性最小。若输入数据为一维:

y = n = 0 N 1 K x {\displaystyle y=\sum _{n=0}^{N-1}Kx}

K = e n {\displaystyle K=e_{n}}

其中en为输入讯号x共变异数矩阵(covariance matrix)Cx的特征向量(eigenvector)

若输入讯号x为二维:

y = m = 0 M 1 n = 0 N 1 K K x {\displaystyle y=\sum _{m=0}^{M-1}\sum _{n=0}^{N-1}KKx}

KLT和Principle component analysis (PCA)有相似的特性,二者之间有很细微的差异,其中KLT专门处理随机性的讯号,但PCA则没有这个限制。对PCA而言,这里假设输入讯号为ㄧ向量,输入向量 x {\displaystyle \mathbf {x} } 在乘上转换矩阵 W {\displaystyle \mathbf {W} } 之前,会先将输入向量扣去平均值,即:

X = W ( x x ¯ ) {\displaystyle \mathbf {X} =\mathbf {W} (\mathbf {x} -{\bar {x}})}

PCA会根据 x {\displaystyle \mathbf {x} } 之covariance矩阵来选择特征向量做为转换矩阵之内容:

E = W Λ W T {\displaystyle E=\mathbf {W\Lambda W} ^{T}}

其中 Λ {\displaystyle \mathbf {\Lambda } } 为对角线矩阵且对角线值为特征值。

由上述可见PCA和KLT之差异在于有没有减去平均值,这是由于输入资料分布的限制造成的,当输入向量支平均值为零时,二这者没有差异。

在影像的压缩上,目的是要将原始的影像档用较少的资料量来表示,由于大部分的影像并不是随机的分布,相邻的像素(Pixal)间存在一些相关性,如果我们能找到一种可逆转换(reversible transformation),它可以去除数据的相关性,如此一来就能更有效地储存资料,由于K-L转换是一种线性转换,并有去除资料相关性的特性,便可以将它应用在影像的压缩上。此外,由于K-L转换具有将讯号转到特征空间(eigenspace)的特性,因此也可以应用在人脸辨识上。

1. Ding, J. J. (2017). Advanced Digital Signal Processing http://djj.ee.ntu.edu.tw/ADSP8.pdf

2. Gerbrands, J.J., On the relationships between SVD, KLT, and PCA, Pattern Recogn., 14 (1981), pp. 375-381

相关

  • 东哥特人东哥特人(Ostrogoths),港、台译作东哥德人,是哥特人的一个分支,3世纪时曾在黑海北边建立一个帝国。5世纪末在意大利建立东哥特王国。东哥特人自波罗的海地区向南扩张,建起一个其幅
  • 铂系元素铂系元素是指元素周期表中位于第5及第6周期的8族、9族及10族元素,位在3个铁系元素的下方,包括第5周期的钌、铑、钯和第6周期的锇、铱、铂。铂系元素电子壳层的最外层都只有0到
  • 声压在物理学中,声压(英文:acoustic pressure)是指声波通过媒质时,由振动所产生的压强改变量,符号为 .mw-parser-output .serif{font-family:Times,serif}p。声波作为一种纵波,在空气中
  • 印度尼西亚日治时期荷属东印度日占时期,是指从1942年3月直至1945年第二次世界大战结束,日本帝国一直保持着对印度尼西亚的占领。日本的占领是第一次对于荷兰人在印度尼西亚统治的真正挑战—结束
  • 查理曼查理曼(法语:Charles Ier le Grand、Charlemagne,德语:Karl I der Große,拉丁语:Carolus Magnus,742年4月2日-814年1月28日或称“查理大帝”,是欧洲中世纪早期法兰克王国的国王(768年
  • 八木一郎八木一郎(1901年7月23日-1990年2月25日),日本爱知县人。自由民主党参议员。1923年,东京商等蚕系学校毕业。1947年,五次当选众议员。历任自民党政调会副会长总务、议员总会会长、众
  • 纳撒尼尔·索斯盖特·沙勒纳撒尼尔·索斯盖特·沙勒(Nathaniel Southgate Shaler ;1841年2月20日-1906年4月10日),是一位美国古生物学家和地质学家,曾发表过大量有关神学和科学相牵连的进化论论文。沙勒184
  • 德米特里·斯捷潘诺维奇·波利扬斯基德米特里·斯捷潘诺维奇·波利扬斯基(俄语:Дми́трий Степа́нович Поля́нский,1917年10月25日-2001年10月8日),苏联时期俄罗斯政治人物。他曾在1965
  • 徐政徐政(?-1409年),南京扬州府仪真县(今江苏省仪征县)人,明朝军事将领。建文年间,其为扬州卫副千户,以城降朱棣,累升至都指挥同知。之后跟从张辅征交阯,夺船于三带江以济明军。此后攻占西都
  • 李璨 (北魏)李璨(432年-471年),字世显,赵郡柏仁县(今河北省邢台市隆尧县)人,出自赵郡李氏东祖,是北魏赵郡太守李均的儿子,北魏官员。李璨身高八尺五寸,外表高大魁梧,跟随梁祚接受学业,兴安年间,担任秘