K-L 转换

✍ dations ◷ 2025-09-10 07:29:50 #估计理论,概率论,信号处理,随机过程

K-L转换(Karhunen-Loève Transform)是建立在统计特性基础上的一种转换,它是均方差(MSE, Mean Square Error)意义下的最佳转换,因此在资料压缩技术中占有重要的地位。

K-L转换名称来自Kari Karhunen和Michel Loève。

K-L转换是对输入的向量x,做一个正交变换,使得输出的向量得以去除数据的相关性。

然而,K-L转换虽然具有均方差(MSE)意义下的最佳转换,但必须事先知道输入的讯号,并且需经过一些繁杂的数学运算,例如协方差(covariance)以及特征向量(eigenvector)的计算。因此在工程实践上K-L转换并没有被广泛的应用,不过K-L转换是理论上最佳的方法,所以在寻找一些不是最佳、但比较好实现的一些转换方法时,K-L转换能够提供这些转换性能的评价标准。

以处理图片为范例,在K-L转换途中,图片的能量会变得集中,有助于压缩图片,但是实际上,KL转算为input-dependent,即需要对每张输入图片存下一个转换机制,每张图都不一样,这在实务应用上是不实际的。

KL转换属于正交转换,其处输入讯号的原理如下:

对输入向量 x {\displaystyle \mathbf {x} } 做KL传换后,输出向量 X {\displaystyle \mathbf {X} } 之元素间( u 1 u 2 {\displaystyle u_{1}\neq u_{2}} , u 1 {\displaystyle u_{1}} u 2 {\displaystyle u_{2}} X {\displaystyle \mathbf {X} } 之元素的index)的相关性为零,即: E X ¯ ) ( X X ¯ ) ] = 0 {\displaystyle E-{\bar {X}})(X-{\bar {X}})]=0}

展开上式并做消去:

E X ] X ¯ X ¯ = 0 {\displaystyle EX]-{\bar {X}}{\bar {X}}=0}

如果 x ¯ = 0 {\displaystyle {\bar {x}}=0} ,因为KL转换式线性转换的关系, X ¯ = 0 {\displaystyle {\bar {X}}=0} ,则可以达成以下式,所以这里得输入向量 x {\displaystyle \mathbf {x} } 之平均值 x ¯ {\displaystyle {\bar {x}}} 需为 0 {\displaystyle 0} ,所以KLT是专门用于随机程序的分析:

E X ] = 0 {\displaystyle EX]=0}

其中 u 1 u 2 {\displaystyle u_{1}\neq u_{2}} ,即输出向量不同元素相关性为 0 {\displaystyle 0}

回到矩阵表示形式,令 K {\displaystyle \mathbf {K} } 为KL转换矩阵,使:

X = K x {\displaystyle \mathbf {X} =\mathbf {Kx} }

K {\displaystyle \mathbf {K} } x {\displaystyle \mathbf {x} } 表示 X {\displaystyle \mathbf {X} } 之covariance矩阵:

E = E = K E K T {\displaystyle E=E=\mathbf {K} E\mathbf {K} ^{T}}

因为 x ¯ = 0 {\displaystyle {\bar {x}}=0} E {\displaystyle E} 直接等于covariance矩阵:

E = K C K T {\displaystyle E=\mathbf {K} \mathbf {C} \mathbf {K} ^{T}}

其中 C {\displaystyle \mathbf {C} } x {\displaystyle \mathbf {x} } 之covariance矩阵。

如果要使 E X ] = 0 {\displaystyle EX]=0} ,则 E {\displaystyle E} 必须为对角线矩阵,即对角线上之值皆为 0 {\displaystyle 0} ,所以 K {\displaystyle \mathbf {K} } 必须将传换成对角线矩阵,即 K {\displaystyle \mathbf {K} } 的每一行皆为 C {\displaystyle \mathbf {C} } 之特征向量。

K-L转换的目的是将原始数据做转换,使得转换后资料的相关性最小。若输入数据为一维:

y = n = 0 N 1 K x {\displaystyle y=\sum _{n=0}^{N-1}Kx}

K = e n {\displaystyle K=e_{n}}

其中en为输入讯号x共变异数矩阵(covariance matrix)Cx的特征向量(eigenvector)

若输入讯号x为二维:

y = m = 0 M 1 n = 0 N 1 K K x {\displaystyle y=\sum _{m=0}^{M-1}\sum _{n=0}^{N-1}KKx}

KLT和Principle component analysis (PCA)有相似的特性,二者之间有很细微的差异,其中KLT专门处理随机性的讯号,但PCA则没有这个限制。对PCA而言,这里假设输入讯号为ㄧ向量,输入向量 x {\displaystyle \mathbf {x} } 在乘上转换矩阵 W {\displaystyle \mathbf {W} } 之前,会先将输入向量扣去平均值,即:

X = W ( x x ¯ ) {\displaystyle \mathbf {X} =\mathbf {W} (\mathbf {x} -{\bar {x}})}

PCA会根据 x {\displaystyle \mathbf {x} } 之covariance矩阵来选择特征向量做为转换矩阵之内容:

E = W Λ W T {\displaystyle E=\mathbf {W\Lambda W} ^{T}}

其中 Λ {\displaystyle \mathbf {\Lambda } } 为对角线矩阵且对角线值为特征值。

由上述可见PCA和KLT之差异在于有没有减去平均值,这是由于输入资料分布的限制造成的,当输入向量支平均值为零时,二这者没有差异。

在影像的压缩上,目的是要将原始的影像档用较少的资料量来表示,由于大部分的影像并不是随机的分布,相邻的像素(Pixal)间存在一些相关性,如果我们能找到一种可逆转换(reversible transformation),它可以去除数据的相关性,如此一来就能更有效地储存资料,由于K-L转换是一种线性转换,并有去除资料相关性的特性,便可以将它应用在影像的压缩上。此外,由于K-L转换具有将讯号转到特征空间(eigenspace)的特性,因此也可以应用在人脸辨识上。

1. Ding, J. J. (2017). Advanced Digital Signal Processing http://djj.ee.ntu.edu.tw/ADSP8.pdf

2. Gerbrands, J.J., On the relationships between SVD, KLT, and PCA, Pattern Recogn., 14 (1981), pp. 375-381

相关

  • 金融经济学金融经济学(英语:Financial economics)(有人误译为财务经济学)是经济学的分支,主要研究在不确定的环境中,如何跨越时间与空间,配置经济资源。它主要集中在研究货币资产的交易活动,
  • 史怀哲阿尔贝特·施韦泽(德语:Albert Schweitzer,1875年1月14日-1965年9月4日),法国阿尔萨斯(出生时属于德国)的通才,拥有神学、音乐、哲学及医学四个博士学位。他生于当时德国阿尔萨斯-洛
  • 平太阳日平太阳或假太阳是一个假想的天体,它每年和真太阳同时从春分点出发,在天赤道上从西向东匀速运行,这个速度相当于真太阳在黄道上运行的平均速度,最后和真太阳同时回到春分点。平太
  • 大部制改革中华人民共和国国务院自1954年9月27日成立以来,经历了多次较大的机构改革。第七届全国人民代表大会第一次会议审议了国务院机构改革方案和国务委员宋平关于国务院机构改革方
  • 长安大学长安大学(英语:Chang'an University)位于陕西省西安市,直属国家教育部,是教育部和交通运输部、国土资源部、住房和城乡建设部、陕西省人民政府共建的国家“985工程”重点建设公立
  • 以色列公民签证要求以色列公民签证要求是指有关以色列护照持有人的签证要求。截至2020年4月7日,以色列公民可免签或落地签进入160个国家和地区,根据亨氏护照指数,以色列护照在旅行自由方面排名第2
  • 方根在数学中,若一个数 b {\displaystyle b} 和是正数。 对于所有的非零复数 a {\displaystyle a} 个不同
  • 都市风光《都市风光》,是一部于1935年上映的中国电影,是中国第一部音乐喜剧片。本片是袁牧之执导的第一部电影,也是江青(时名“蓝苹”)首次出演的电影。 
  • 突厥沙希王朝突厥沙希王朝(土耳其语:Türk Şahiler),是一个由665年生存至850年的阿富汗王朝,统治喀布尔和卡比萨省,建国者巴尔哈特勤是突厥人。王国核心地区是喀布里斯坦,也包括札布里斯坦和犍
  • 宗师 (漫威漫画)宗师(英语:Grandmaster),本名恩·杜维·加斯特(En Dwi Gast),是漫威漫画中的虚构角色,由作家罗伊·汤玛斯(英语:Roy Thomas)和艺术家沙尔·比施马(英语:Sal Buscema)所创作。宗师首次于《