K-L 转换

✍ dations ◷ 2025-08-17 04:18:50 #估计理论,概率论,信号处理,随机过程

K-L转换(Karhunen-Loève Transform)是建立在统计特性基础上的一种转换,它是均方差(MSE, Mean Square Error)意义下的最佳转换,因此在资料压缩技术中占有重要的地位。

K-L转换名称来自Kari Karhunen和Michel Loève。

K-L转换是对输入的向量x,做一个正交变换,使得输出的向量得以去除数据的相关性。

然而,K-L转换虽然具有均方差(MSE)意义下的最佳转换,但必须事先知道输入的讯号,并且需经过一些繁杂的数学运算,例如协方差(covariance)以及特征向量(eigenvector)的计算。因此在工程实践上K-L转换并没有被广泛的应用,不过K-L转换是理论上最佳的方法,所以在寻找一些不是最佳、但比较好实现的一些转换方法时,K-L转换能够提供这些转换性能的评价标准。

以处理图片为范例,在K-L转换途中,图片的能量会变得集中,有助于压缩图片,但是实际上,KL转算为input-dependent,即需要对每张输入图片存下一个转换机制,每张图都不一样,这在实务应用上是不实际的。

KL转换属于正交转换,其处输入讯号的原理如下:

对输入向量 x {\displaystyle \mathbf {x} } 做KL传换后,输出向量 X {\displaystyle \mathbf {X} } 之元素间( u 1 u 2 {\displaystyle u_{1}\neq u_{2}} , u 1 {\displaystyle u_{1}} u 2 {\displaystyle u_{2}} X {\displaystyle \mathbf {X} } 之元素的index)的相关性为零,即: E X ¯ ) ( X X ¯ ) ] = 0 {\displaystyle E-{\bar {X}})(X-{\bar {X}})]=0}

展开上式并做消去:

E X ] X ¯ X ¯ = 0 {\displaystyle EX]-{\bar {X}}{\bar {X}}=0}

如果 x ¯ = 0 {\displaystyle {\bar {x}}=0} ,因为KL转换式线性转换的关系, X ¯ = 0 {\displaystyle {\bar {X}}=0} ,则可以达成以下式,所以这里得输入向量 x {\displaystyle \mathbf {x} } 之平均值 x ¯ {\displaystyle {\bar {x}}} 需为 0 {\displaystyle 0} ,所以KLT是专门用于随机程序的分析:

E X ] = 0 {\displaystyle EX]=0}

其中 u 1 u 2 {\displaystyle u_{1}\neq u_{2}} ,即输出向量不同元素相关性为 0 {\displaystyle 0}

回到矩阵表示形式,令 K {\displaystyle \mathbf {K} } 为KL转换矩阵,使:

X = K x {\displaystyle \mathbf {X} =\mathbf {Kx} }

K {\displaystyle \mathbf {K} } x {\displaystyle \mathbf {x} } 表示 X {\displaystyle \mathbf {X} } 之covariance矩阵:

E = E = K E K T {\displaystyle E=E=\mathbf {K} E\mathbf {K} ^{T}}

因为 x ¯ = 0 {\displaystyle {\bar {x}}=0} E {\displaystyle E} 直接等于covariance矩阵:

E = K C K T {\displaystyle E=\mathbf {K} \mathbf {C} \mathbf {K} ^{T}}

其中 C {\displaystyle \mathbf {C} } x {\displaystyle \mathbf {x} } 之covariance矩阵。

如果要使 E X ] = 0 {\displaystyle EX]=0} ,则 E {\displaystyle E} 必须为对角线矩阵,即对角线上之值皆为 0 {\displaystyle 0} ,所以 K {\displaystyle \mathbf {K} } 必须将传换成对角线矩阵,即 K {\displaystyle \mathbf {K} } 的每一行皆为 C {\displaystyle \mathbf {C} } 之特征向量。

K-L转换的目的是将原始数据做转换,使得转换后资料的相关性最小。若输入数据为一维:

y = n = 0 N 1 K x {\displaystyle y=\sum _{n=0}^{N-1}Kx}

K = e n {\displaystyle K=e_{n}}

其中en为输入讯号x共变异数矩阵(covariance matrix)Cx的特征向量(eigenvector)

若输入讯号x为二维:

y = m = 0 M 1 n = 0 N 1 K K x {\displaystyle y=\sum _{m=0}^{M-1}\sum _{n=0}^{N-1}KKx}

KLT和Principle component analysis (PCA)有相似的特性,二者之间有很细微的差异,其中KLT专门处理随机性的讯号,但PCA则没有这个限制。对PCA而言,这里假设输入讯号为ㄧ向量,输入向量 x {\displaystyle \mathbf {x} } 在乘上转换矩阵 W {\displaystyle \mathbf {W} } 之前,会先将输入向量扣去平均值,即:

X = W ( x x ¯ ) {\displaystyle \mathbf {X} =\mathbf {W} (\mathbf {x} -{\bar {x}})}

PCA会根据 x {\displaystyle \mathbf {x} } 之covariance矩阵来选择特征向量做为转换矩阵之内容:

E = W Λ W T {\displaystyle E=\mathbf {W\Lambda W} ^{T}}

其中 Λ {\displaystyle \mathbf {\Lambda } } 为对角线矩阵且对角线值为特征值。

由上述可见PCA和KLT之差异在于有没有减去平均值,这是由于输入资料分布的限制造成的,当输入向量支平均值为零时,二这者没有差异。

在影像的压缩上,目的是要将原始的影像档用较少的资料量来表示,由于大部分的影像并不是随机的分布,相邻的像素(Pixal)间存在一些相关性,如果我们能找到一种可逆转换(reversible transformation),它可以去除数据的相关性,如此一来就能更有效地储存资料,由于K-L转换是一种线性转换,并有去除资料相关性的特性,便可以将它应用在影像的压缩上。此外,由于K-L转换具有将讯号转到特征空间(eigenspace)的特性,因此也可以应用在人脸辨识上。

1. Ding, J. J. (2017). Advanced Digital Signal Processing http://djj.ee.ntu.edu.tw/ADSP8.pdf

2. Gerbrands, J.J., On the relationships between SVD, KLT, and PCA, Pattern Recogn., 14 (1981), pp. 375-381

相关

  • 施马伦贝格病毒施马伦贝格病毒(Schmallenberg virus)最早是在2011年11月,在德国北莱茵的施马伦贝格中发病的乳牛身上发现。继德国之后,在2012年的2月,陆续在荷兰、比利时、英国、法国也陆续发现
  • 生殖隔离生殖隔离,又称生殖屏障,在生物学上通常指由于生殖方面的原因,即使地缘关系相近,但物种不同的类群之间不能互相交配,或不易交配成功的隔离机制。一般来讲生殖隔离用以定义物种,不具
  • 乔治·克莱因乔治·约翰·克莱因,OCMBE(英语:George Johann Klein,1904年8月15日-1992年11月4日)出生于加拿大安大略省哈密尔顿,是一位发明家,被称为20世纪加拿大最多产的发明家。他发明了第一代
  • 血染的季节《血染的季节》(英语:)是一套1989年电影的美国剧情片,由尤桑·巴尔琪执导,当奴·修打兰等主演。电影改编自安德烈·布林克1979年的同名小说,两者均以1970年代仍在实行种族隔离政策
  • 方宾方宾(14世纪-1421年),江浙行省杭州路钱塘县(今浙江省杭州市)人,明朝政治人物。洪武年间,其以太学生试兵部郎中。建文年间,在应天府从事,后连坐戍守广东。后因茹常举荐恢复官职。朱棣攻
  • The quick brown fox jumps over the lazy dogThe quick brown fox jumps over the lazy dog(相对应的中文可以简短地翻译为“快狐跨懒狗”,完整翻译则是“敏捷的棕色狐狸跨过懒狗”)是一个著名的英语全字母句,常被用于测试
  • 日本情报处理学会日本情报处理学会 (英语:Information Processing Society of Japan) 是一个情报收集,处理的计算机科学学会。1960年4月22日创建于东京都,是国际信息处理联合会正式成员。 2017
  • 郭质甫郭质甫(1916年8月-1996年5月24日),曾用名郭效斌,男,山西崞县人,中华人民共和国政治人物,曾任广西军区政治委员,广西壮族自治区人大常委会副主任。
  • 普鲁士内阁首长普鲁士总理(德语:Ministerpräsident),君主制废除前称普鲁士首相,设立于1702年,在1947年因废除普鲁士取消。
  • 守护者联盟《守护者联盟》(英语:)是一部2012年美国3D电脑动画奇幻冒险片,根据威廉·乔西创作的系列书籍 (《守护者联盟》系列图书,简体中文版已由漓江出版社出版)和Joyce与Reel FX制作的短片