配方

✍ dations ◷ 2025-07-06 08:28:09 #配方
配方法,是初等代数中一种简化计算的技巧,可以用来解二次方程、判别解析几何中某些多项式的图形,或者用来计算微积分学中的某些积分型式等。将下方左边的多项式化成右边的形式,就是配方法的目标:在基本代数中,配方法是一种用来把二次函数化为一个多项式的平方与一个常数的和的方法。这种方法是把以下的多项式配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有 ( x + y ) 2 = x 2 + 2 x y + y 2 {displaystyle (x+y)^{2}=x^{2}+2xy+y^{2}} 的形式,可导出 2 x y = b a x {displaystyle 2xy={frac {b}{a}}x} ,因此 y = b 2 a {displaystyle y={frac {b}{2a}}} 。等式两边加上 y 2 = ( b 2 a ) 2 {displaystyle y^{2}=({frac {b}{2a}})^{2}} ,可得:这个表达式称为二次方程的求根公式。考虑把以下的方程配方:如果尝试把矩形 x 2 {displaystyle x^{2}} 和两个 b 2 x {displaystyle {frac {b}{2}},x} 合并成一个更大的正方形,这个正方形还会缺一个角。把以上方程的两端加上 ( b 2 ) 2 {displaystyle left({frac {b}{2}}right)^{2}} ,正好是欠缺的角的面积,这就是“配方法”的名称的由来。为了得到 a x 2 + b x = ( c x + d ) 2 + e , {displaystyle ax^{2}+bx=(cx+d)^{2}+e,,} 我们设得出 a x 2 + b x = ( a x + b 2 a ) 2 − b 2 4 a . {displaystyle ax^{2}+bx=left({sqrt {a}},x+{frac {b}{2{sqrt {a}}}}right)^{2}-{frac {b^{2}}{4a}}.,}注意 ( c x + d ) 2 + e = c 2 x 2 + 2 c d x + d 2 + e {displaystyle left(cx+dright)^{2}+e=c^{2}x^{2}+2cdx+d^{2}+e} 。为了把 c 2 x 2 + 2 c d x + d 2 + e {displaystyle c^{2}x^{2}+2cdx+d^{2}+e!} 化为 a x 2 + b x + f {displaystyle ax^{2}+bx+f!} 的形式,我们必须进行以下的代换:现在, a {displaystyle a} 、 b {displaystyle b} 和 f {displaystyle f} 依赖于 c {displaystyle c} 、 d {displaystyle d} 和 e {displaystyle e} ,因此我们可以把 c {displaystyle c} 、 d {displaystyle d} 和 e {displaystyle e} 用 a {displaystyle a} 、 b {displaystyle b} 和 f {displaystyle f} 来表示:当且仅当 f {displaystyle f} 等于零且 a {displaystyle a} 是正数时,这些方程与以上是等价的。如果 a {displaystyle a} 是负数,那么 c {displaystyle c} 和 d {displaystyle d} 的表达式中的±号都表示负号──然而,如果 c {displaystyle c} 和 d {displaystyle d} 都是负数的话,那么 ( c x + d ) 2 {displaystyle (cx+d)^{2}} 的值将不受影响,因此 ± {displaystyle pm } 号是不需要的。从中我们可以求出多项式为零时 x {displaystyle x} 的值,也就是多项式的根。我们也可以求出 x {displaystyle x} 取得什么值时,以下的多项式为最大值或最小值:假设我们要求出以下函数的原函数:因此积分为:考虑以下的表达式:作为另外一个例子,以下的表达式因此通常配方法是把第三项 v 2 {displaystyle v^{2}} 加在 u 2 + 2 u v {displaystyle u^{2}+2uv,} ,得出一个平方。我们也可以把中间的项( 2 u v {displaystyle 2uv} 或 − 2 u v {displaystyle -2uv} )加在多项式 u 2 + v 2 {displaystyle u^{2}+v^{2},} 就得出一个平方。从以下的恒等式中,我们可以看出,正数 x {displaystyle x} 与它的倒数的和总是大于或等于 2。假设我们要把以下的四次多项式分解:最后一个步骤是把所有的项按降幂方式排列。

相关

  • Er4f12 6s22, 8, 18, 30, 8, 2蒸气压3, 2, 1 (第一:589.3 kJ·mol−1 第二:1150 kJ·mol−1 第三:2194 kJ·mol主条目:铒的同位素铒是一种化学元素,它的化学符号是Er,它的原子
  • 中医学系中医学系简称中医系,是隶属医学院或中医学院下的一个科系,主要在培养中医学的专业人才,提升社会上中医医疗环境。中医系的专业科目包括中医基础理论、中医临床基础、中医医史文
  • 糖原生成糖原生成(英语:Glycogenesis)是指生物体中糖原合成的过程,其中葡萄糖分子被添加到糖原链上以用于储存。在肝脏进行完科里循环后的休息时期,此过程被启动起来;胰岛素也可以启动这一
  • DNA连接酶DNA连接酶(EC 6.5.1.1),也称DNA黏合酶,在分子生物学中扮演一个既特殊又关键的角色,那就是把两条DNA黏合成一条。无论是双股或是单股DNA的黏合,DNA连接酶都可以借由形成磷酸双脂键
  • 伦敦大学学院伦敦大学学院(University College London)是英国著名大学,是伦敦大学联盟的加盟大学,也是G5超级精英大学的一员。伦敦大学学院至今共拥有31位诺贝尔奖校友,是伦敦大学系统中众多
  • 臭鼬臭鼬(学名:Mephitis mephitis,美俚称:Skunk),是臭鼬科最著名的一种动物。臭鼬广泛分布在北美洲墨西哥以北的广大地区,在加拿大和美国都非常常见,甚至被当作宠物驯养。臭鼬的体毛为黑
  • 郑经克台郑经嗣位之争,又称郑经克台或郑经靖难,是台湾明郑王朝的历史事件。公元1662年(永历十六年)5月至11月,首代延平王郑成功病薨后,郑成功之子郑经与郑成功之弟郑袭为了争夺王位,展开长
  • 黄耀祥黄耀祥(1916年8月17日-2004年2月22日),广东开平人,中国水稻遗传育种及其应用基础理论研究专家。曾任广东省农业科学院副院长、研究员。广东省人大常委、第五届全国人大代表。1995
  • mesenchyme间充质(英语:Mesenchyme)是一种未分化的结缔组织。间充质指出自胚层来的结缔组织。间充质也包括一小部分的从别的胚胎层的组织,包括内胚层的神经脊部分。间充质的细胞在成年后
  • 网络心理学网络心理学是一个新兴的网络名词。通常是指以心理学经典理论为基础,以实证研究为手段,研究互联网相关情景下,人的心理、行为及其规律性的一门应用心理学学科。截至到此条目撰写