配方

✍ dations ◷ 2025-06-29 04:28:30 #配方
配方法,是初等代数中一种简化计算的技巧,可以用来解二次方程、判别解析几何中某些多项式的图形,或者用来计算微积分学中的某些积分型式等。将下方左边的多项式化成右边的形式,就是配方法的目标:在基本代数中,配方法是一种用来把二次函数化为一个多项式的平方与一个常数的和的方法。这种方法是把以下的多项式配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有 ( x + y ) 2 = x 2 + 2 x y + y 2 {displaystyle (x+y)^{2}=x^{2}+2xy+y^{2}} 的形式,可导出 2 x y = b a x {displaystyle 2xy={frac {b}{a}}x} ,因此 y = b 2 a {displaystyle y={frac {b}{2a}}} 。等式两边加上 y 2 = ( b 2 a ) 2 {displaystyle y^{2}=({frac {b}{2a}})^{2}} ,可得:这个表达式称为二次方程的求根公式。考虑把以下的方程配方:如果尝试把矩形 x 2 {displaystyle x^{2}} 和两个 b 2 x {displaystyle {frac {b}{2}},x} 合并成一个更大的正方形,这个正方形还会缺一个角。把以上方程的两端加上 ( b 2 ) 2 {displaystyle left({frac {b}{2}}right)^{2}} ,正好是欠缺的角的面积,这就是“配方法”的名称的由来。为了得到 a x 2 + b x = ( c x + d ) 2 + e , {displaystyle ax^{2}+bx=(cx+d)^{2}+e,,} 我们设得出 a x 2 + b x = ( a x + b 2 a ) 2 − b 2 4 a . {displaystyle ax^{2}+bx=left({sqrt {a}},x+{frac {b}{2{sqrt {a}}}}right)^{2}-{frac {b^{2}}{4a}}.,}注意 ( c x + d ) 2 + e = c 2 x 2 + 2 c d x + d 2 + e {displaystyle left(cx+dright)^{2}+e=c^{2}x^{2}+2cdx+d^{2}+e} 。为了把 c 2 x 2 + 2 c d x + d 2 + e {displaystyle c^{2}x^{2}+2cdx+d^{2}+e!} 化为 a x 2 + b x + f {displaystyle ax^{2}+bx+f!} 的形式,我们必须进行以下的代换:现在, a {displaystyle a} 、 b {displaystyle b} 和 f {displaystyle f} 依赖于 c {displaystyle c} 、 d {displaystyle d} 和 e {displaystyle e} ,因此我们可以把 c {displaystyle c} 、 d {displaystyle d} 和 e {displaystyle e} 用 a {displaystyle a} 、 b {displaystyle b} 和 f {displaystyle f} 来表示:当且仅当 f {displaystyle f} 等于零且 a {displaystyle a} 是正数时,这些方程与以上是等价的。如果 a {displaystyle a} 是负数,那么 c {displaystyle c} 和 d {displaystyle d} 的表达式中的±号都表示负号──然而,如果 c {displaystyle c} 和 d {displaystyle d} 都是负数的话,那么 ( c x + d ) 2 {displaystyle (cx+d)^{2}} 的值将不受影响,因此 ± {displaystyle pm } 号是不需要的。从中我们可以求出多项式为零时 x {displaystyle x} 的值,也就是多项式的根。我们也可以求出 x {displaystyle x} 取得什么值时,以下的多项式为最大值或最小值:假设我们要求出以下函数的原函数:因此积分为:考虑以下的表达式:作为另外一个例子,以下的表达式因此通常配方法是把第三项 v 2 {displaystyle v^{2}} 加在 u 2 + 2 u v {displaystyle u^{2}+2uv,} ,得出一个平方。我们也可以把中间的项( 2 u v {displaystyle 2uv} 或 − 2 u v {displaystyle -2uv} )加在多项式 u 2 + v 2 {displaystyle u^{2}+v^{2},} 就得出一个平方。从以下的恒等式中,我们可以看出,正数 x {displaystyle x} 与它的倒数的和总是大于或等于 2。假设我们要把以下的四次多项式分解:最后一个步骤是把所有的项按降幂方式排列。

相关

  • OMIM人类孟德尔遗传学(英语:Mendelian Inheritance in Man,缩写MIM)是一个数据库将现时所知的遗传病分类,并且连接相关的人类基因组中的基因。这个数据库出版了名为《孟德尔遗传定律
  • 唐家乡唐家乡可以指:
  • 髟部,为汉字索引中的部首之一,康熙字典214个部首中的第一百九十个(十划的则为第四个)。就繁体和简体中文中,髟部归于十划部首。髟部只以上方为部字。且无其他部首可用者将部首归
  • 梅德韦杰夫德米特里·阿纳托利耶维奇·梅德韦杰夫(俄语:Дми́трий Анато́льевич Медве́дев,读音: .mw-parser-output .IPA{font-family:"Charis SIL","Doulo
  • 格鲁吉亚拉里拉里(格鲁吉亚语:ლარი,ISO代码:GEL),格鲁吉亚的官方货币单位。每一拉里可以分为100特瑞(英语:tetri)。“拉里”一词是一个古老的格鲁吉亚词语,含义为储藏,而“特瑞”是科尔基斯地区
  • 阿卜杜拉二世努尔王后陛下阿莉亚公主殿下穆娜公主殿下穆罕默德王子殿下塔吉德王妃殿下菲雅王妃殿下哈桑王子殿下莎瓦王妃殿下巴丝玛公主殿下阿里王子殿下莉玛王妃殿下亚森王子殿下珊娜王
  • 泛代数泛代数(Universal algebra),研究通用于所有代数结构的理论,而不是代数结构的模型。举个例子,并不是将特殊的个别的群作为个体分别来学习,而是将整个群论的理论作为学习的主题。从
  • 双和医院卫生福利部双和医院,简称双和医院,为中华民国卫生福利部委托台北医学大学兴建经营的大型医院,是台湾首家BOT的医院。目前是中永和地区的准医学中心,为JCI国际认证医院。双和医院
  • 54年
  • 太阳鸟太阳鸟科,俗称玄凤(学名:Nectariniidae)是鸟纲雀形目中的一个科。主要生活在热带地区,以花蜜为食,有时也吃昆虫。为留鸟或短途候鸟。