首页 >
配方
✍ dations ◷ 2025-10-16 22:05:01 #配方
配方法,是初等代数中一种简化计算的技巧,可以用来解二次方程、判别解析几何中某些多项式的图形,或者用来计算微积分学中的某些积分型式等。将下方左边的多项式化成右边的形式,就是配方法的目标:在基本代数中,配方法是一种用来把二次函数化为一个多项式的平方与一个常数的和的方法。这种方法是把以下的多项式配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有
(
x
+
y
)
2
=
x
2
+
2
x
y
+
y
2
{displaystyle (x+y)^{2}=x^{2}+2xy+y^{2}}
的形式,可导出
2
x
y
=
b
a
x
{displaystyle 2xy={frac {b}{a}}x}
,因此
y
=
b
2
a
{displaystyle y={frac {b}{2a}}}
。等式两边加上
y
2
=
(
b
2
a
)
2
{displaystyle y^{2}=({frac {b}{2a}})^{2}}
,可得:这个表达式称为二次方程的求根公式。考虑把以下的方程配方:如果尝试把矩形
x
2
{displaystyle x^{2}}
和两个
b
2
x
{displaystyle {frac {b}{2}},x}
合并成一个更大的正方形,这个正方形还会缺一个角。把以上方程的两端加上
(
b
2
)
2
{displaystyle left({frac {b}{2}}right)^{2}}
,正好是欠缺的角的面积,这就是“配方法”的名称的由来。为了得到
a
x
2
+
b
x
=
(
c
x
+
d
)
2
+
e
,
{displaystyle ax^{2}+bx=(cx+d)^{2}+e,,}
我们设得出
a
x
2
+
b
x
=
(
a
x
+
b
2
a
)
2
−
b
2
4
a
.
{displaystyle ax^{2}+bx=left({sqrt {a}},x+{frac {b}{2{sqrt {a}}}}right)^{2}-{frac {b^{2}}{4a}}.,}注意
(
c
x
+
d
)
2
+
e
=
c
2
x
2
+
2
c
d
x
+
d
2
+
e
{displaystyle left(cx+dright)^{2}+e=c^{2}x^{2}+2cdx+d^{2}+e}
。为了把
c
2
x
2
+
2
c
d
x
+
d
2
+
e
{displaystyle c^{2}x^{2}+2cdx+d^{2}+e!}
化为
a
x
2
+
b
x
+
f
{displaystyle ax^{2}+bx+f!}
的形式,我们必须进行以下的代换:现在,
a
{displaystyle a}
、
b
{displaystyle b}
和
f
{displaystyle f}
依赖于
c
{displaystyle c}
、
d
{displaystyle d}
和
e
{displaystyle e}
,因此我们可以把
c
{displaystyle c}
、
d
{displaystyle d}
和
e
{displaystyle e}
用
a
{displaystyle a}
、
b
{displaystyle b}
和
f
{displaystyle f}
来表示:当且仅当
f
{displaystyle f}
等于零且
a
{displaystyle a}
是正数时,这些方程与以上是等价的。如果
a
{displaystyle a}
是负数,那么
c
{displaystyle c}
和
d
{displaystyle d}
的表达式中的±号都表示负号──然而,如果
c
{displaystyle c}
和
d
{displaystyle d}
都是负数的话,那么
(
c
x
+
d
)
2
{displaystyle (cx+d)^{2}}
的值将不受影响,因此
±
{displaystyle pm }
号是不需要的。从中我们可以求出多项式为零时
x
{displaystyle x}
的值,也就是多项式的根。我们也可以求出
x
{displaystyle x}
取得什么值时,以下的多项式为最大值或最小值:假设我们要求出以下函数的原函数:因此积分为:考虑以下的表达式:作为另外一个例子,以下的表达式因此通常配方法是把第三项
v
2
{displaystyle v^{2}}
加在
u
2
+
2
u
v
{displaystyle u^{2}+2uv,}
,得出一个平方。我们也可以把中间的项(
2
u
v
{displaystyle 2uv}
或
−
2
u
v
{displaystyle -2uv}
)加在多项式
u
2
+
v
2
{displaystyle u^{2}+v^{2},}
就得出一个平方。从以下的恒等式中,我们可以看出,正数
x
{displaystyle x}
与它的倒数的和总是大于或等于 2。假设我们要把以下的四次多项式分解:最后一个步骤是把所有的项按降幂方式排列。
相关
- 阿尔西比亚德斯阿尔西比亚德斯(希腊语:Ἀλκιβιάδης Κλεινίου Σκαμβωνίδης,拉丁语:Alkibiádēs Kleiníou Skambōnidēs,前450年-前404年)是雅典杰出的政治家、演说
- 生物战生化武器,旧称细菌武器,是指用来杀伤人员、牲畜和毁坏农作物的致病性微生物及其毒素,依赖生物与生物之间的克制对有生力量发挥杀伤作用。生物武器的施放装置包括炮弹、炸弹、火
- 软体动物见内文软体动物门(学名:Mollusca)属于无脊椎动物,就其物种多样性而言,是动物界的第二大门, 仅次于节肢动物门,其已确认的物种数量估计有十万多种。软体动物能适应许多不同环境,分布
- 牙牙部,为汉字索引中的部首之一,康熙字典214个部首中的第九十二个(四划的则为第三十二个)。就繁体和简体中文中,牙部归于四划部首。牙部通常是从下方均可为部字。且无其他部首可用
- 雪球地球雪球地球(英语:Snowball Earth),是为了解释一些地质现象而提出的假说。该假说认为在新元古代时候曾经发生过一次严重的冰河期,以至于地球上的海洋全部被冻结,仅仅在厚达两公里的冰
- 羰基化合物化学上,羰基化合物可以有不同的含义。
- A-DNAA-DNA又称A型DNA,为DNA双股螺旋的一种形式,拥有与较普遍的B-DNA相似的右旋结构,但其螺旋较短较紧密。A-DNA是三种具有生物活性的DNA双螺旋结构,另两种则为B-DNA及Z-DNA。一般只
- 张百龄百龄(满语:ᠪᡝᠯᡳᠩ,穆麟德:beling,1748年-1816年),中国清朝官员,张姓,字菊溪,内务府汉军正黄旗人,乾隆三十七年进士。嘉庆九年九月十四,由云南布政使升任广西巡抚。嘉庆九年十一月二十
- 比萨比萨(意大利语:Pisa)是意大利中部名城,位于阿尔诺河三角洲,人口10余万,面积190平方公里,纺织、制革业和商业较发达。同时也是著名的文教中心,有1813年由拿破仑创建的比萨高等师范大
- 阳江话阳江话,属高阳片粤语,通行于阳江大部分地区。阳江话的前身与客语类似,来自古老的中原,且阳江话同时融合了古南越俚人(原住民)的语言特点。这造成了阳江话基本无法与客语及其他粤语