配位场理论(英语:Ligand field theory,首字母缩略字:LFT)是晶体场理论和分子轨道理论的结合,用以解释配位化合物中的成键情况。 与晶体场理论不同的是,配位场理论考虑配体与中心原子之间一定程度的共价键合,可以解释晶体场理论无法解释的光谱化学序列等现象。一般LFT选取的模型都为八面体构型,即六个配体沿坐标轴正负指向中心原子,以方便理解。
八面体配合物中,六个配体从、和正负轴指向中心原子,因此凡是有σ对称性的外层轨道都可能与配体孤对电子的外层σ轨道重叠形成σ键。轨道、轨道中的电子则主要进入轨道成分,类似于晶体场理论中的轨道成键,以及与配体的π或π*分子轨道结合。
中心原子含有π对称性的轨道包括轨道和金属原子成键,例如F−、Cl−、OH−等配体与金属原子形成的配合物,配体的电子填充成键π分子轨道,中心原子的(值变小,配合物易形成高自旋型,电子从配体流向中心原子,形成“正常的”π配键。
相反,当配体有低能级的空π*轨道和金属原子成键,例如CO、CN−、PR3等,原来的非键值增大,电子进入成键π分子轨道,看上去电子是从中心原子流向配体,因此称之为反馈π键。
晶体场理论只从静电作用考虑,认为电子进入非键轨道或反键轨道中,非键与反键之间的能级差称为分裂能Δo(o代表八面体),受以下两个因素影响:
电子排布为
- 的金属配合物自旋态会受分裂能大小影响。电子填充到非键和反键轨道中时,若电子优先成对排到非键轨道中,则称为低自旋态;若电子优先进入反键轨道,而后成对,则称为高自旋态。较大的分裂能常导致低自旋态,而较小的分裂能则常导致高自旋态。具体请参见晶体场理论#高自旋和低自旋。光谱化学序列由光谱数据衍生出,根据分裂能Δ的大小来衡量配体的“强度”。由配位场理论可知,弱场配体都是π电子给予体(如I−),强场配体都是π电子接受体(如CN−和CO),而配体如H2O或NH3则处于中间,π相互作用很弱。
I− < Br− < S2− < SCN− < Cl− < NO3− < N3− < F− < OH− < C2O42− < H2O < NCS− < CH3CN < py (吡啶) < NH3 < en (乙二胺) < bipy (2,2'-联吡啶) < phen (1,10-邻菲啰啉) < NO2− < PH3 < CN− < CO
配位场理论是20世纪三四十年代时,在晶体场理论的基础上,同时结合分子轨道理论建立起来的。晶体场理论假设配位键由中心原子与配体之间的静电吸引组成,忽视其中的共价性,因此无法解释光谱化学序列和中性配体(如N2和CO)形成的配合物。配位场理论则弥补了这些不足。