首页 >
哈密顿方程
✍ dations ◷ 2025-01-23 03:09:40 #哈密顿方程
哈密顿力学是哈密顿于1833年建立的经典力学的重新表述,它由拉格朗日力学演变而来。拉格朗日力学是经典力学的另一表述,由拉格朗日于1788年建立。哈密顿力学与拉格朗日力学不同的是前者可以使用辛空间而不依赖于拉格朗日力学表述。关于这点请参看其数学表述。适合用哈密顿力学表述的动力系统称为哈密顿系统。从拉格朗日力学开始,运动方程基于广义坐标而相应的广义速度为通过延伸记号的意义,可以将拉格朗日函数写作其中带下标的变量视为所有N个该类型的变量。哈密顿力学的目标是用广义动量(也称为共轭动量)变量取代广义速度。这样一来,就可能处理特定的系统,例如量子力学的某些方面,否则其表述会更复杂。对于每个广义速度,有一个对应的共轭动量,定义为:在直角坐标系中,广义动量就是物理上的线性动量。在极坐标中,对应角速度的广义动量就是物理上的角动量。对于广义坐标的任意选取,可能不能找到共轭动量的直观解释。在依赖于坐标的表述中不太明显的一点是:不同的广义坐标实际上无非就是同一辛流形的不同坐标表示。哈密顿量是拉格朗日量的勒让德变换:若定义广义坐标的变换方程和t无关,可以证明H等于总能量E = T + V.H
{displaystyle H}
的定义的每边各产生一个微分:把前面共轭动量的定义代入这个方程并合并系数,得到哈密顿力学的运动方程,称为哈密顿方程:哈密顿方程是一阶微分方程,因而比拉格朗日方程容易解,因为那个是二阶的。但是,导出运动方程的步骤比拉格朗日力学更繁琐 - 从广义坐标和拉格朗日量开始,必须先计算哈密尔顿量,用共轭动量来表达每个广义坐标,然后将共轭动量代入哈密顿量。总之,用哈密顿力学来解决问题不比用拉格朗日力学简单多少。最终,这会得到和拉格朗日力学和牛顿运动定律同样的解。哈密顿方法的主要优点在于它提供了经典力学理论的更深刻结果的基础。哈密顿系统可以理解为时间R上的一个纤维丛E,其纤维Et,t ∈ R是位置空间。拉格朗日量则是E上的jet丛(射流丛)J上的函数;取拉格朗日量的纤维内的勒让德变换就产生了一个时间上的对偶丛的函数,其在t的纤维是余切空间T*Et,它有一个自然的辛形式,而这个函数就是哈密顿量。任何辛流形上的光滑实值函数H可以用来定义一个哈密顿系统。函数H称为哈密顿量或者能量函数。该辛流形则称为相空间。哈密顿量在辛流形上导出一个特殊的向量场,称为辛向量场。该辛向量场,称为哈密顿向量场,导出一个流形上的哈密顿流。该向量场的一个积分曲线是一个流形的变换的单参数族;该曲线的参数通常称为时间。该时间的演变由辛同胚给出。根据刘维尔定理每个辛同胚保持相空间的体积形式不变。由哈密顿流导出的辛同胚的族通常称为哈密顿系统的哈密顿力学。哈密顿向量场也导出一个特殊的操作,泊松括号。泊松括号作用于辛流形上的函数,给了流形上的函数空间一个李代数的结构。特别的有,给定一个函数f若已知有一个概率分布, ρ,则(因为相空间速度(
p
˙
i
,
q
˙
i
{displaystyle {{dot {p}}_{i}},{{dot {q}}_{i}}}
)有0散度,而概率是不变的)其传达导数(convective derivative)可以证明为0,所以这称为刘维尔定理。每个辛流形上的光滑函数G产生一个单参数辛同胚族,而若{ G, H } = 0,则G是守恒的,而该辛同胚是对称变换。哈密顿向量场的可积性是未解决的问题。通常,哈密顿系统是混沌的;测度,完备性,可积性和稳定性的概念没有良好的定义。迄今为止,动力系统的研究主要是定性的,而非定量的科学。哈密顿量的重要特例是二次型,也就是,可以如下表达的哈密顿量其中
⟨
⋅
,
⋅
⟩
q
{displaystyle langle cdot ,cdot rangle _{q}}
是纤维
T
q
∗
Q
{displaystyle T_{q}^{*}Q}
(组态空间中的点q上的余切空间)上的余度量。该哈密顿量完全由动能项组成。若考虑一个黎曼流形或一个伪黎曼流形,使得存在一个可逆,非退化的度量,则该余度量可以简单的由该度量的逆给出。哈密顿-雅可比方程的解就是流形上的测地线。特别的有,这个情况下的哈密顿流就是测地流。这些解的存在性和解集的完备性在测地线条目中有详细讨论。当余度量是退化的时,它不是可逆的。在这个情况下,这不是一个黎曼流形,因为它没有一个度量。但是,哈密顿量依然存在。这个情况下,在流形Q的每一点q余度量是退化的,因此余度量的阶小于流行Q的维度,因而是一个亚黎曼流形。这种情况下的哈密顿量称为亚黎曼哈密顿量。每个这样的哈密顿量唯一的决定余度量,反过来也是一样。这意味着每个亚黎曼流形由其亚黎曼哈密顿量唯一的决定,而其逆命题也为真:每个亚黎曼流形有唯一的亚黎曼哈密顿量。亚黎曼测地线的存在性由周-腊雪夫斯基定理(英语:Chow–Rashevskii theorem)给出。连续实值海森堡群提供了亚黎曼流形的一个例子。对于海森堡群,哈密顿量为p
z
{displaystyle p_{z}}
没有在哈密顿量中被涉及到。哈密尔顿系统可以几种方式推广。如果不仅简单的利用辛流形上的光滑函数的结合代数,哈密尔顿系统可以用更一般的交换有单位的实泊松代数表述。一个状态是一个(装备了恰当的拓扑结构的)泊松代数上的连续线性泛函,使得对于代数中的每个元素A,A2映射到非负实数。进一步的推广由南部力学给出。
相关
- IUCN 3.1国际自然保护联盟濒危物种红色名录(或称IUCN红色名录,简称红皮书)于1963年开始编制,是全球动植物物种保护现状最全面的名录。此名录由国际自然保护联盟编制及维护。IUCN红色名录
- 固结固结是指松软土壤在外力作用下发生压缩、去水而逐渐密实的过程。当有压力施加在土体时,土粒会更加紧密的压在一起,使土体孔隙中水分逐渐排出、体积变小、密度增大。土壤的固结
- 碳式复写纸碳式复写纸(Carbon paper)是压敏复写纸的一种,是一种一面涂有干墨水或者其他颜料的纸,通常使用蜡封。当人们通过手写或者打字机制作原件的同时,它被用来复制副本。将碳纸放在原件
- 米尔斯坦色萨·米尔斯坦(英语:César Milstein,1927年10月8日-2002年3月24日),出生于阿根廷布兰卡港的英国生物化学家。于1984年与尼尔斯·杰尼及乔治斯·克勒共同获得诺贝尔生理学或医学
- 长阳人长阳人,中国华中地区旧石器时代中期的人类,属早期智人,距今年代约为19.5万年,介于猿人和现代人之间,与北京猿人末期年代相当,是中国长江以南最早发现的远古人类之一。“长阳人”的
- 胜利广场胜利广场(Place des Victoires)是巴黎的一个圆形广场,位于巴黎皇家宫殿东北方不远处,第一区和第二区交界处。在广场中心,是国王路易十四的宏伟的骑马雕像,以庆祝1678-79年签订《奈
- 夸克夸克时期 是物理宇宙学的早期宇宙演化的一段时期,这时基本作用力的重力、电磁力、强作用力和弱作用力已经分离成为现在的形式,但温度仍然很高,不允许夸克结合在一起形成强子。
- 阿弗沙尔实验阿弗沙尔实验(Afshar experiment)是一项光学实验,可能可以挑战量子力学中的互补原理(principle of complementarity),虽然当前仍未有物理学方面的共识。此实验是首先由伊朗科
- 希腊土耳其人口互换1923年希腊土耳其人口互换,是在希腊和土耳其签署洛桑条约后,约200万人(约150万安纳托利亚的希腊人和50万在希腊的穆斯林)法律上从自己家园变成难民。1922年底,绝大多数小亚细亚本
- 宝拉·韦斯理宝拉·安娜·玛丽亚·韦斯理(英语:Paula Anna Maria Wessely,1907年1月20日-2000年5月11日),是一名奥地利剧场和电影女演员。粉丝和爱慕者爱称她为“死亡韦斯理”(Die Wessely,字面