首页 >
微分
✍ dations ◷ 2024-12-22 20:44:19 #微分
在数学中,微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。当某些函数
f
{displaystyle textstyle f}
的自变量
x
{displaystyle textstyle x}
有一个微小的改变
h
{displaystyle textstyle h}
时,函数的变化可以分解为两个部分。一个部分是线性部分:在一维情况下,它正比于自变量的变化量
h
{displaystyle textstyle h}
,可以表示成
h
{displaystyle textstyle h}
和一个与
h
{displaystyle textstyle h}
无关,只与函数
f
{displaystyle textstyle f}
及
x
{displaystyle textstyle x}
有关的量的乘积;在更广泛的情况下,它是一个线性映射作用在
h
{displaystyle textstyle h}
上的值。另一部分是比
h
{displaystyle textstyle h}
更高阶的无穷小,也就是说除以
h
{displaystyle textstyle h}
后仍然会趋于零。当改变量
h
{displaystyle textstyle h}
很小时,第二部分可以忽略不计,函数的变化量约等于第一部分,也就是函数在
x
{displaystyle textstyle x}
处的微分,记作
f
′
(
x
)
h
{displaystyle displaystyle f'(x)h}
或
d
f
x
(
h
)
{displaystyle displaystyle {textrm {d}}f_{x}(h)}
。如果一个函数在某处具有以上的性质,就称此函数在该点可微。不是所有的函数的变化量都可以分为以上提到的两个部分。若函数在某一点无法做到可微,便称函数在该点不可微。在古典的微积分学中,微分被定义为变化量的线性部分,在现代的定义中,微分被定义为将自变量的改变量
h
{displaystyle textstyle h}
映射到变化量的线性部分的线性映射
d
f
x
{displaystyle displaystyle {textrm {d}}f_{x}}
。这个映射也被称为切映射。给定的函数在一点的微分如果存在,就一定是唯一的。设函数
y
=
f
(
x
)
{displaystyle y=f(x)}
在某区间
I
{displaystyle {mathcal {I}}}
内有定义。对于
I
{displaystyle {mathcal {I}}}
内一点
x
0
{displaystyle x_{0}}
,当
x
0
{displaystyle x_{0}}
变动到附近的
x
0
+
Δ
x
{displaystyle x_{0}+Delta x}
(也在此区间内)时,如果函数的增量
Δ
y
=
f
(
x
0
+
Δ
x
)
−
f
(
x
0
)
{displaystyle Delta y=f(x_{0}+Delta x)-f(x_{0})}
可表示为
Δ
y
=
A
Δ
x
+
o
(
Δ
x
)
{displaystyle Delta y=ADelta x+o(Delta x)}
(其中
A
{displaystyle A}
是不依赖于
Δ
x
{displaystyle Delta x}
的常数),而
o
(
Δ
x
)
{displaystyle o(Delta x)}
是比
Δ
x
{displaystyle Delta x}
高阶的无穷小,那么称函数
f
(
x
)
{displaystyle f(x)}
在点
x
0
{displaystyle x_{0}}
是可微的,且
A
Δ
x
{displaystyle ADelta x}
称作函数在点
x
0
{displaystyle x_{0}}
相应于自变量增量
Δ
x
{displaystyle Delta x}
的微分,记作
d
y
{displaystyle {textrm {d}}y}
,即
d
y
=
A
Δ
x
{displaystyle {textrm {d}}y=ADelta x}
,
d
y
{displaystyle {textrm {d}}y}
是
Δ
y
{displaystyle Delta y}
的线性主部。:141通常把自变量
x
{displaystyle x}
的增量
Δ
x
{displaystyle Delta x}
称为自变量的微分,记作
d
x
{displaystyle {textrm {d}}x}
,即
d
x
=
Δ
x
{displaystyle {textrm {d}}x=Delta x}
。微分和导数是两个不同的概念。但是,对一元函数来说,可微与可导是完全等价的概念:141。可微的函数,其微分等于导数乘以自变量的微分
d
x
{displaystyle {textrm {d}}x}
,换句话说,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。于是函数
y
=
f
(
x
)
{displaystyle y=f(x)}
的微分又可记作
d
y
=
f
′
(
x
)
d
x
{displaystyle {textrm {d}}y=f'(x){textrm {d}}x}
。设
Δ
x
{displaystyle Delta x}
是曲线
y
=
f
(
x
)
{displaystyle y=f(x)}
上的点
P
{displaystyle P}
在横坐标上的增量,
Δ
y
{displaystyle Delta y}
是曲线在点
P
{displaystyle P}
对应
Δ
x
{displaystyle Delta x}
在纵坐标上的增量,
d
y
{displaystyle {textrm {d}}y}
是曲线在点
P
{displaystyle P}
的切线对应
Δ
x
{displaystyle Delta x}
在纵坐标上的增量。当
|
Δ
x
|
{displaystyle left|Delta xright|}
很小时,
|
Δ
y
−
d
y
|
{displaystyle left|Delta y-{textrm {d}}yright|}
比
|
Δ
x
|
{displaystyle left|Delta xright|}
要小得多(高阶无穷小),因此在点
P
{displaystyle P}
附近,我们可以用切线段来近似代替曲线段。设有函数
f
:
x
↦
x
2
{displaystyle f:xmapsto x^{2}}
,考虑它从某一点
x
{displaystyle x}
变到
x
+
d
x
{displaystyle x+{textrm {d}}x}
。这时,函数的改变量
f
(
x
+
d
x
)
−
f
(
x
)
{displaystyle f(x+{textrm {d}}x)-f(x)}
等于:其中的线性主部:
A
d
x
=
2
x
d
x
{displaystyle Adx=2xdx}
,高阶无穷小是
o
(
d
x
)
=
(
d
x
)
2
{displaystyle o({textrm {d}}x)=({textrm {d}}x)^{2}}
。
因此函数
f
{displaystyle textstyle f}
在点
x
{displaystyle textstyle x}
处的微分是
d
y
=
2
x
d
x
{displaystyle {textrm {d}}y=2x{textrm {d}}x}
。函数的微分与自变量的微分之商
d
y
d
x
=
2
x
=
f
′
(
x
)
{displaystyle {frac {{textrm {d}}y}{{textrm {d}}x}}=2x=f^{prime }(x)}
,等于函数的导数。以下有一例子:
当方程式为
y
=
2
x
2
{displaystyle y=2x^{2}}
时,就会有以下的微分过程。和求导一样,微分有类似的法则。例如,如果设函数
u
{displaystyle u}
、
v
{displaystyle v}
可微,那么:当自变量是多元变量时,导数的概念已经不适用了(尽管可以定义对某个分量的偏导数,但偏导数只对单一自变量微分),但仍然有微分的概念。设
f
{displaystyle f}
是从欧几里得空间Rn(或者任意一个内积空间)中的一个开集
Ω
{displaystyle Omega }
射到Rm的一个函数。对于
Ω
{displaystyle Omega }
中的一点
x
{displaystyle x}
及其在
Ω
{displaystyle Omega }
中的邻域
Λ
{displaystyle Lambda }
中的点
x
+
h
{displaystyle x+h}
。如果存在线性映射
A
{displaystyle A}
使得对任意这样的
x
+
h
{displaystyle x+h}
,那么称函数
f
{displaystyle f}
在点
x
{displaystyle x}
处可微。线性映射
A
{displaystyle A}
叫做
f
{displaystyle f}
在点
x
{displaystyle x}
处的微分,记作
d
f
x
{displaystyle {textrm {d}}f_{x}}
。如果
f
{displaystyle f}
在点
x
{displaystyle x}
处可微,那么它在该点处一定连续,而且在该点的微分只有一个。为了和偏导数区别,多元函数的微分也叫做全微分或全导数。当函数在某个区域的每一点
x
{displaystyle x}
都有微分
d
f
x
{displaystyle {textrm {d}}f_{x}}
时,可以考虑将
x
{displaystyle x}
映射到
d
f
x
{displaystyle {textrm {d}}f_{x}}
的函数:这个函数一般称为微分函数。具体来说,对于一个改变量:
h
=
(
h
1
,
h
2
,
…
,
h
n
)
=
∑
i
=
1
n
h
i
e
i
{displaystyle h=(h_{1},h_{2},ldots ,h_{n})=sum _{i=1}^{n}h_{i}e_{i}}
,微分值:函数
f
:
(
x
,
y
)
↦
(
x
2
+
y
2
,
(
1
−
x
2
−
y
2
)
x
−
y
,
x
−
(
1
−
x
2
−
y
2
)
y
)
{displaystyle f:(x,y)mapsto left(x^{2}+y^{2},(1-x^{2}-y^{2})x-y,x-(1-x^{2}-y^{2})yright)}
是一个从
R
2
{displaystyle mathbb {R} ^{2}}
射到
R
3
{displaystyle mathbb {R} ^{3}}
的函数。它在某一点
(
x
,
y
)
{displaystyle (x,y)}
的雅可比矩阵为:微分为:
d
f
(
x
,
y
)
:
h
↦
J
f
(
x
,
y
)
(
h
)
{displaystyle {textrm {d}}f_{(x,y)}:hmapsto J_{f}(x,y)(h)}
,也就是:如果说微分是导数的一种推广,那么微分形式则是对于微分函数的再推广。微分函数对每个点
x
{displaystyle x}
给出一个近似描述函数性质的线性映射
d
f
x
{displaystyle {textrm {d}}f_{x}}
,而微分形式对区域
D
{displaystyle mathbf {D} }
内的每一点给出一个从该点的切空间映射到值域的斜对称形式:
ω
(
x
)
:
T
D
x
⟶
R
{displaystyle omega (x):mathbf {TD} _{x}longrightarrow mathbb {R} }
。在坐标记法下,可以写成:其中的
d
x
i
{displaystyle {textrm {d}}x^{i}}
是
i
{displaystyle i}
-射影算子,也就是说将一个向量
v
{displaystyle v}
射到它的第
i
{displaystyle i}
个分量
v
i
{displaystyle v^{i}}
的映射。而
d
x
i
1
∧
⋯
∧
d
x
i
k
{displaystyle {textrm {d}}x^{i_{1}}wedge cdots wedge {textrm {d}}x^{i_{k}}}
是满足:的k-形式。特别地,当
f
{displaystyle f}
是一个从Rn射到R 的函数时,可以将
d
f
x
{displaystyle {textrm {d}}f_{x}}
写作:正是上面公式的一个特例。
相关
- pg皮克,质量单位,符号pg(英语:picogram)。皮克是一个极微少的质量单位。1皮克等于一万亿分之一克(10-12克),当用于药物(如:兴奋剂)或污染物(如:二
- 体感体感,或称躯体感觉,是触觉、压觉、温觉、痛觉和本体感觉(关于肌肉和关节位置和运动、躯体姿势和运动以及面部表情的感觉)的总称。体感是和特殊感觉相对的一个概念。这些不同的体
- 蜜月旅游度蜜月,又称为蜜月旅行,是新婚夫妻一起到某一个地方所度过的休闲时光。蜜月旅行的要点,在于行程浪漫之余,亦不失个人的空间。因此,若非必要而要参加旅行团的话,也希望观光的地点能
- 金泽医科大学なす紺各学域人間社会学域理工学域金泽大学(日语:金沢大學/かなざわだいがく Kanazawa daigaku;英语译名:Kanazawa University),简称金大(きんだい),是一所本部位于石川县金泽市的日
- 2005年日本国际博览会2005年日本世界博览会(The 2005 World Exposition, Aichi, Japan,简称EXPO 2005)是2005年3月25日至2005年9月25日在日本爱知县濑户市、丰田市和长久手市举办的世界博览会。森林
- 米氏方程米-门二氏动力学(英语:Michaelis-Menten kinetics),又称米氏动力学,是由雷昂诺·米凯利斯(英语:Leonor Michaelis)和贸特·门顿(英语:Maud Menten)在1913年提出,它在酶动力学中是一个极
- 虾黄赤蜻虾黄赤蜻(学名:Sympetrum flaveolum),又名黄翅赤蜻,是分布在欧洲及中国中及北部的蜻蜓。它们只在死水中繁殖,尤其是在泥煤沼。它们虽然并非住在英国,但有些有时会迁徙至此。于1906
- 联胺联氨、联胺、二氮烷或.mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{fo
- 数值制图数字测图一种全解析、机助测图方法,即以数字的形式表达地形特征点的集合形态。数字测图实现了丰富的地形信息和地理信息数字化和作业过程的自动化或半自动化。尽可能地缩短野
- 广州港广州港集团有限公司(上交所:601228),简称广州港,位于广州市行政辖区内珠江沿岸,距珠江入海口虎门约40海里,是中国大陆最重要的沿海和内河交通运输枢纽之一。在公元前2世纪就作为对