微分

✍ dations ◷ 2025-01-23 06:13:34 #微分
在数学中,微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。当某些函数 f {displaystyle textstyle f} 的自变量 x {displaystyle textstyle x} 有一个微小的改变 h {displaystyle textstyle h} 时,函数的变化可以分解为两个部分。一个部分是线性部分:在一维情况下,它正比于自变量的变化量 h {displaystyle textstyle h} ,可以表示成 h {displaystyle textstyle h} 和一个与 h {displaystyle textstyle h} 无关,只与函数 f {displaystyle textstyle f} 及 x {displaystyle textstyle x} 有关的量的乘积;在更广泛的情况下,它是一个线性映射作用在 h {displaystyle textstyle h} 上的值。另一部分是比 h {displaystyle textstyle h} 更高阶的无穷小,也就是说除以 h {displaystyle textstyle h} 后仍然会趋于零。当改变量 h {displaystyle textstyle h} 很小时,第二部分可以忽略不计,函数的变化量约等于第一部分,也就是函数在 x {displaystyle textstyle x} 处的微分,记作 f ′ ( x ) h {displaystyle displaystyle f'(x)h} 或 d f x ( h ) {displaystyle displaystyle {textrm {d}}f_{x}(h)} 。如果一个函数在某处具有以上的性质,就称此函数在该点可微。不是所有的函数的变化量都可以分为以上提到的两个部分。若函数在某一点无法做到可微,便称函数在该点不可微。在古典的微积分学中,微分被定义为变化量的线性部分,在现代的定义中,微分被定义为将自变量的改变量 h {displaystyle textstyle h} 映射到变化量的线性部分的线性映射 d f x {displaystyle displaystyle {textrm {d}}f_{x}} 。这个映射也被称为切映射。给定的函数在一点的微分如果存在,就一定是唯一的。设函数 y = f ( x ) {displaystyle y=f(x)} 在某区间 I {displaystyle {mathcal {I}}} 内有定义。对于 I {displaystyle {mathcal {I}}} 内一点 x 0 {displaystyle x_{0}} ,当 x 0 {displaystyle x_{0}} 变动到附近的 x 0 + Δ x {displaystyle x_{0}+Delta x} (也在此区间内)时,如果函数的增量 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) {displaystyle Delta y=f(x_{0}+Delta x)-f(x_{0})} 可表示为 Δ y = A Δ x + o ( Δ x ) {displaystyle Delta y=ADelta x+o(Delta x)} (其中 A {displaystyle A} 是不依赖于 Δ x {displaystyle Delta x} 的常数),而 o ( Δ x ) {displaystyle o(Delta x)} 是比 Δ x {displaystyle Delta x} 高阶的无穷小,那么称函数 f ( x ) {displaystyle f(x)} 在点 x 0 {displaystyle x_{0}} 是可微的,且 A Δ x {displaystyle ADelta x} 称作函数在点 x 0 {displaystyle x_{0}} 相应于自变量增量 Δ x {displaystyle Delta x} 的微分,记作 d y {displaystyle {textrm {d}}y} ,即 d y = A Δ x {displaystyle {textrm {d}}y=ADelta x} , d y {displaystyle {textrm {d}}y} 是 Δ y {displaystyle Delta y} 的线性主部。:141通常把自变量 x {displaystyle x} 的增量 Δ x {displaystyle Delta x} 称为自变量的微分,记作 d x {displaystyle {textrm {d}}x} ,即 d x = Δ x {displaystyle {textrm {d}}x=Delta x} 。微分和导数是两个不同的概念。但是,对一元函数来说,可微与可导是完全等价的概念:141。可微的函数,其微分等于导数乘以自变量的微分 d x {displaystyle {textrm {d}}x} ,换句话说,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。于是函数 y = f ( x ) {displaystyle y=f(x)} 的微分又可记作 d y = f ′ ( x ) d x {displaystyle {textrm {d}}y=f'(x){textrm {d}}x} 。设 Δ x {displaystyle Delta x} 是曲线 y = f ( x ) {displaystyle y=f(x)} 上的点 P {displaystyle P} 在横坐标上的增量, Δ y {displaystyle Delta y} 是曲线在点 P {displaystyle P} 对应 Δ x {displaystyle Delta x} 在纵坐标上的增量, d y {displaystyle {textrm {d}}y} 是曲线在点 P {displaystyle P} 的切线对应 Δ x {displaystyle Delta x} 在纵坐标上的增量。当 | Δ x | {displaystyle left|Delta xright|} 很小时, | Δ y − d y | {displaystyle left|Delta y-{textrm {d}}yright|} 比 | Δ x | {displaystyle left|Delta xright|} 要小得多(高阶无穷小),因此在点 P {displaystyle P} 附近,我们可以用切线段来近似代替曲线段。设有函数 f : x ↦ x 2 {displaystyle f:xmapsto x^{2}} ,考虑它从某一点 x {displaystyle x} 变到 x + d x {displaystyle x+{textrm {d}}x} 。这时,函数的改变量 f ( x + d x ) − f ( x ) {displaystyle f(x+{textrm {d}}x)-f(x)} 等于:其中的线性主部: A d x = 2 x d x {displaystyle Adx=2xdx} ,高阶无穷小是 o ( d x ) = ( d x ) 2 {displaystyle o({textrm {d}}x)=({textrm {d}}x)^{2}} 。 因此函数 f {displaystyle textstyle f} 在点 x {displaystyle textstyle x} 处的微分是 d y = 2 x d x {displaystyle {textrm {d}}y=2x{textrm {d}}x} 。函数的微分与自变量的微分之商 d y d x = 2 x = f ′ ( x ) {displaystyle {frac {{textrm {d}}y}{{textrm {d}}x}}=2x=f^{prime }(x)} ,等于函数的导数。以下有一例子: 当方程式为 y = 2 x 2 {displaystyle y=2x^{2}} 时,就会有以下的微分过程。和求导一样,微分有类似的法则。例如,如果设函数 u {displaystyle u} 、 v {displaystyle v} 可微,那么:当自变量是多元变量时,导数的概念已经不适用了(尽管可以定义对某个分量的偏导数,但偏导数只对单一自变量微分),但仍然有微分的概念。设 f {displaystyle f} 是从欧几里得空间Rn(或者任意一个内积空间)中的一个开集 Ω {displaystyle Omega } 射到Rm的一个函数。对于 Ω {displaystyle Omega } 中的一点 x {displaystyle x} 及其在 Ω {displaystyle Omega } 中的邻域 Λ {displaystyle Lambda } 中的点 x + h {displaystyle x+h} 。如果存在线性映射 A {displaystyle A} 使得对任意这样的 x + h {displaystyle x+h} ,那么称函数 f {displaystyle f} 在点 x {displaystyle x} 处可微。线性映射 A {displaystyle A} 叫做 f {displaystyle f} 在点 x {displaystyle x} 处的微分,记作 d f x {displaystyle {textrm {d}}f_{x}} 。如果 f {displaystyle f} 在点 x {displaystyle x} 处可微,那么它在该点处一定连续,而且在该点的微分只有一个。为了和偏导数区别,多元函数的微分也叫做全微分或全导数。当函数在某个区域的每一点 x {displaystyle x} 都有微分 d f x {displaystyle {textrm {d}}f_{x}} 时,可以考虑将 x {displaystyle x} 映射到 d f x {displaystyle {textrm {d}}f_{x}} 的函数:这个函数一般称为微分函数。具体来说,对于一个改变量: h = ( h 1 , h 2 , … , h n ) = ∑ i = 1 n h i e i {displaystyle h=(h_{1},h_{2},ldots ,h_{n})=sum _{i=1}^{n}h_{i}e_{i}} ,微分值:函数 f : ( x , y ) ↦ ( x 2 + y 2 , ( 1 − x 2 − y 2 ) x − y , x − ( 1 − x 2 − y 2 ) y ) {displaystyle f:(x,y)mapsto left(x^{2}+y^{2},(1-x^{2}-y^{2})x-y,x-(1-x^{2}-y^{2})yright)} 是一个从 R 2 {displaystyle mathbb {R} ^{2}} 射到 R 3 {displaystyle mathbb {R} ^{3}} 的函数。它在某一点 ( x , y ) {displaystyle (x,y)} 的雅可比矩阵为:微分为: d f ( x , y ) : h ↦ J f ( x , y ) ( h ) {displaystyle {textrm {d}}f_{(x,y)}:hmapsto J_{f}(x,y)(h)} ,也就是:如果说微分是导数的一种推广,那么微分形式则是对于微分函数的再推广。微分函数对每个点 x {displaystyle x} 给出一个近似描述函数性质的线性映射 d f x {displaystyle {textrm {d}}f_{x}} ,而微分形式对区域 D {displaystyle mathbf {D} } 内的每一点给出一个从该点的切空间映射到值域的斜对称形式: ω ( x ) : T D x ⟶ R {displaystyle omega (x):mathbf {TD} _{x}longrightarrow mathbb {R} } 。在坐标记法下,可以写成:其中的 d x i {displaystyle {textrm {d}}x^{i}} 是 i {displaystyle i} -射影算子,也就是说将一个向量 v {displaystyle v} 射到它的第 i {displaystyle i} 个分量 v i {displaystyle v^{i}} 的映射。而 d x i 1 ∧ ⋯ ∧ d x i k {displaystyle {textrm {d}}x^{i_{1}}wedge cdots wedge {textrm {d}}x^{i_{k}}} 是满足:的k-形式。特别地,当 f {displaystyle f} 是一个从Rn射到R 的函数时,可以将 d f x {displaystyle {textrm {d}}f_{x}} 写作:正是上面公式的一个特例。

相关

  • 机器翻译机器翻译(英语:Machine Translation,经常简写为MT,简称机译)属于计算语言学的范畴,其研究借由计算机程序将文字或演说从一种自然语言翻译成另一种自然语言。简单来说,机器翻译是通
  • 纤维蛋白纤维蛋白(英语:Fibrin,又称为血纤蛋白或血纤维蛋白)是一种纤维凝血蛋白纤维蛋白在以下生物过程中都需要使用:信息传递、血液凝固、血小板活性化及蛋白质聚合。
  • 肠道外营养肠道外营养(parenteral nutrition)是将营养送入静脉中,而非一般地食入后消化。注入的营养品是由专业的制药公司制造,其营养品富有高度养分,包含了葡萄糖、盐、氨基酸还有脂肪等等
  • 埃奥利群岛埃奥利群岛(意大利语:Isole Eolie,西西里语:Ìsuli Eoli),又名利帕里群岛(Lipari Islands)是位于西西里岛北侧第勒尼安海中的火山群岛,得名于半神半人的风神埃俄罗斯。埃奥利群岛在夏
  • 线形文字B线形文字B是希腊迈锡尼文明时期的一种音节文字。线形文字B出现于青铜时代晚期,早于希腊字母(约公元前15世纪)数个世纪,随着迈锡尼文明的衰落而消逝。写有线形文字B的泥板大部分
  • span class=chemf style=white-space:nowrap;Csub6/subH己烷,化学式C6H14,是烷烃中的第六个成员。己烷是常用的非极性具汽油味的有机溶剂,被广泛应用于色谱法中。正己烷作为良好的有机溶剂,被广泛使用在化工有机合成,机械设备表面清洗
  • 峨嵋山暗色岩峨嵋山暗色岩(Emeishan Traps)又译峨嵋山玄武岩,另一名称是二叠纪峨嵋山大火成岩省(Permian Emeishan Large Igneous Province),是个大火成岩省,由溢流玄武岩所形成,位于中国四川省
  • 鲸鱼谷鲸鱼谷(阿拉伯语:وادي الحيتان‎;英语:Wadi Al-Hitan;按中文音译又作“瓦地阿希坦”、“瓦第阿希坦”或“瓦迪阿希坦”;“瓦迪”(Wadi)即干谷、干涸河床的意思)是埃及法尤
  • 第戎1法国统计部门在计算土地面积时,不计算面积大于1平方公里的湖泊、池塘、冰川和河口。第戎(法语:Dijon),法国东部城市,勃艮第-弗朗什-孔泰大区的首府和科多尔省的省会,也是该大区内
  • 中烟1999年规定:印章直径4.5厘米,中央刊国徽,由国务院制发。中国烟草标志国家烟草专卖局,简称国家烟草局,成立于1984年,与中国烟草总公司合署办公,对中国内地烟草业实行统一领导、垂直