首页 >
微分
✍ dations ◷ 2025-06-07 09:51:17 #微分
在数学中,微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。当某些函数
f
{displaystyle textstyle f}
的自变量
x
{displaystyle textstyle x}
有一个微小的改变
h
{displaystyle textstyle h}
时,函数的变化可以分解为两个部分。一个部分是线性部分:在一维情况下,它正比于自变量的变化量
h
{displaystyle textstyle h}
,可以表示成
h
{displaystyle textstyle h}
和一个与
h
{displaystyle textstyle h}
无关,只与函数
f
{displaystyle textstyle f}
及
x
{displaystyle textstyle x}
有关的量的乘积;在更广泛的情况下,它是一个线性映射作用在
h
{displaystyle textstyle h}
上的值。另一部分是比
h
{displaystyle textstyle h}
更高阶的无穷小,也就是说除以
h
{displaystyle textstyle h}
后仍然会趋于零。当改变量
h
{displaystyle textstyle h}
很小时,第二部分可以忽略不计,函数的变化量约等于第一部分,也就是函数在
x
{displaystyle textstyle x}
处的微分,记作
f
′
(
x
)
h
{displaystyle displaystyle f'(x)h}
或
d
f
x
(
h
)
{displaystyle displaystyle {textrm {d}}f_{x}(h)}
。如果一个函数在某处具有以上的性质,就称此函数在该点可微。不是所有的函数的变化量都可以分为以上提到的两个部分。若函数在某一点无法做到可微,便称函数在该点不可微。在古典的微积分学中,微分被定义为变化量的线性部分,在现代的定义中,微分被定义为将自变量的改变量
h
{displaystyle textstyle h}
映射到变化量的线性部分的线性映射
d
f
x
{displaystyle displaystyle {textrm {d}}f_{x}}
。这个映射也被称为切映射。给定的函数在一点的微分如果存在,就一定是唯一的。设函数
y
=
f
(
x
)
{displaystyle y=f(x)}
在某区间
I
{displaystyle {mathcal {I}}}
内有定义。对于
I
{displaystyle {mathcal {I}}}
内一点
x
0
{displaystyle x_{0}}
,当
x
0
{displaystyle x_{0}}
变动到附近的
x
0
+
Δ
x
{displaystyle x_{0}+Delta x}
(也在此区间内)时,如果函数的增量
Δ
y
=
f
(
x
0
+
Δ
x
)
−
f
(
x
0
)
{displaystyle Delta y=f(x_{0}+Delta x)-f(x_{0})}
可表示为
Δ
y
=
A
Δ
x
+
o
(
Δ
x
)
{displaystyle Delta y=ADelta x+o(Delta x)}
(其中
A
{displaystyle A}
是不依赖于
Δ
x
{displaystyle Delta x}
的常数),而
o
(
Δ
x
)
{displaystyle o(Delta x)}
是比
Δ
x
{displaystyle Delta x}
高阶的无穷小,那么称函数
f
(
x
)
{displaystyle f(x)}
在点
x
0
{displaystyle x_{0}}
是可微的,且
A
Δ
x
{displaystyle ADelta x}
称作函数在点
x
0
{displaystyle x_{0}}
相应于自变量增量
Δ
x
{displaystyle Delta x}
的微分,记作
d
y
{displaystyle {textrm {d}}y}
,即
d
y
=
A
Δ
x
{displaystyle {textrm {d}}y=ADelta x}
,
d
y
{displaystyle {textrm {d}}y}
是
Δ
y
{displaystyle Delta y}
的线性主部。:141通常把自变量
x
{displaystyle x}
的增量
Δ
x
{displaystyle Delta x}
称为自变量的微分,记作
d
x
{displaystyle {textrm {d}}x}
,即
d
x
=
Δ
x
{displaystyle {textrm {d}}x=Delta x}
。微分和导数是两个不同的概念。但是,对一元函数来说,可微与可导是完全等价的概念:141。可微的函数,其微分等于导数乘以自变量的微分
d
x
{displaystyle {textrm {d}}x}
,换句话说,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。于是函数
y
=
f
(
x
)
{displaystyle y=f(x)}
的微分又可记作
d
y
=
f
′
(
x
)
d
x
{displaystyle {textrm {d}}y=f'(x){textrm {d}}x}
。设
Δ
x
{displaystyle Delta x}
是曲线
y
=
f
(
x
)
{displaystyle y=f(x)}
上的点
P
{displaystyle P}
在横坐标上的增量,
Δ
y
{displaystyle Delta y}
是曲线在点
P
{displaystyle P}
对应
Δ
x
{displaystyle Delta x}
在纵坐标上的增量,
d
y
{displaystyle {textrm {d}}y}
是曲线在点
P
{displaystyle P}
的切线对应
Δ
x
{displaystyle Delta x}
在纵坐标上的增量。当
|
Δ
x
|
{displaystyle left|Delta xright|}
很小时,
|
Δ
y
−
d
y
|
{displaystyle left|Delta y-{textrm {d}}yright|}
比
|
Δ
x
|
{displaystyle left|Delta xright|}
要小得多(高阶无穷小),因此在点
P
{displaystyle P}
附近,我们可以用切线段来近似代替曲线段。设有函数
f
:
x
↦
x
2
{displaystyle f:xmapsto x^{2}}
,考虑它从某一点
x
{displaystyle x}
变到
x
+
d
x
{displaystyle x+{textrm {d}}x}
。这时,函数的改变量
f
(
x
+
d
x
)
−
f
(
x
)
{displaystyle f(x+{textrm {d}}x)-f(x)}
等于:其中的线性主部:
A
d
x
=
2
x
d
x
{displaystyle Adx=2xdx}
,高阶无穷小是
o
(
d
x
)
=
(
d
x
)
2
{displaystyle o({textrm {d}}x)=({textrm {d}}x)^{2}}
。
因此函数
f
{displaystyle textstyle f}
在点
x
{displaystyle textstyle x}
处的微分是
d
y
=
2
x
d
x
{displaystyle {textrm {d}}y=2x{textrm {d}}x}
。函数的微分与自变量的微分之商
d
y
d
x
=
2
x
=
f
′
(
x
)
{displaystyle {frac {{textrm {d}}y}{{textrm {d}}x}}=2x=f^{prime }(x)}
,等于函数的导数。以下有一例子:
当方程式为
y
=
2
x
2
{displaystyle y=2x^{2}}
时,就会有以下的微分过程。和求导一样,微分有类似的法则。例如,如果设函数
u
{displaystyle u}
、
v
{displaystyle v}
可微,那么:当自变量是多元变量时,导数的概念已经不适用了(尽管可以定义对某个分量的偏导数,但偏导数只对单一自变量微分),但仍然有微分的概念。设
f
{displaystyle f}
是从欧几里得空间Rn(或者任意一个内积空间)中的一个开集
Ω
{displaystyle Omega }
射到Rm的一个函数。对于
Ω
{displaystyle Omega }
中的一点
x
{displaystyle x}
及其在
Ω
{displaystyle Omega }
中的邻域
Λ
{displaystyle Lambda }
中的点
x
+
h
{displaystyle x+h}
。如果存在线性映射
A
{displaystyle A}
使得对任意这样的
x
+
h
{displaystyle x+h}
,那么称函数
f
{displaystyle f}
在点
x
{displaystyle x}
处可微。线性映射
A
{displaystyle A}
叫做
f
{displaystyle f}
在点
x
{displaystyle x}
处的微分,记作
d
f
x
{displaystyle {textrm {d}}f_{x}}
。如果
f
{displaystyle f}
在点
x
{displaystyle x}
处可微,那么它在该点处一定连续,而且在该点的微分只有一个。为了和偏导数区别,多元函数的微分也叫做全微分或全导数。当函数在某个区域的每一点
x
{displaystyle x}
都有微分
d
f
x
{displaystyle {textrm {d}}f_{x}}
时,可以考虑将
x
{displaystyle x}
映射到
d
f
x
{displaystyle {textrm {d}}f_{x}}
的函数:这个函数一般称为微分函数。具体来说,对于一个改变量:
h
=
(
h
1
,
h
2
,
…
,
h
n
)
=
∑
i
=
1
n
h
i
e
i
{displaystyle h=(h_{1},h_{2},ldots ,h_{n})=sum _{i=1}^{n}h_{i}e_{i}}
,微分值:函数
f
:
(
x
,
y
)
↦
(
x
2
+
y
2
,
(
1
−
x
2
−
y
2
)
x
−
y
,
x
−
(
1
−
x
2
−
y
2
)
y
)
{displaystyle f:(x,y)mapsto left(x^{2}+y^{2},(1-x^{2}-y^{2})x-y,x-(1-x^{2}-y^{2})yright)}
是一个从
R
2
{displaystyle mathbb {R} ^{2}}
射到
R
3
{displaystyle mathbb {R} ^{3}}
的函数。它在某一点
(
x
,
y
)
{displaystyle (x,y)}
的雅可比矩阵为:微分为:
d
f
(
x
,
y
)
:
h
↦
J
f
(
x
,
y
)
(
h
)
{displaystyle {textrm {d}}f_{(x,y)}:hmapsto J_{f}(x,y)(h)}
,也就是:如果说微分是导数的一种推广,那么微分形式则是对于微分函数的再推广。微分函数对每个点
x
{displaystyle x}
给出一个近似描述函数性质的线性映射
d
f
x
{displaystyle {textrm {d}}f_{x}}
,而微分形式对区域
D
{displaystyle mathbf {D} }
内的每一点给出一个从该点的切空间映射到值域的斜对称形式:
ω
(
x
)
:
T
D
x
⟶
R
{displaystyle omega (x):mathbf {TD} _{x}longrightarrow mathbb {R} }
。在坐标记法下,可以写成:其中的
d
x
i
{displaystyle {textrm {d}}x^{i}}
是
i
{displaystyle i}
-射影算子,也就是说将一个向量
v
{displaystyle v}
射到它的第
i
{displaystyle i}
个分量
v
i
{displaystyle v^{i}}
的映射。而
d
x
i
1
∧
⋯
∧
d
x
i
k
{displaystyle {textrm {d}}x^{i_{1}}wedge cdots wedge {textrm {d}}x^{i_{k}}}
是满足:的k-形式。特别地,当
f
{displaystyle f}
是一个从Rn射到R 的函数时,可以将
d
f
x
{displaystyle {textrm {d}}f_{x}}
写作:正是上面公式的一个特例。
相关
- 孔道蛋白结构 / ECOD2fgrA:21-351 2fgqX:20-351 1pho :27-351 1iivA:27-378 1osmA:27-363 1opfD:28-362 1mpf :28-362 2omf :28-362 1gfm :28-362 1hxuA:28-362
- 粘质沙雷氏菌黏质沙雷菌(学名:Serratia marcescens)又称灵杆菌,属于耶尔森菌科(英语:Yersiniaceae)沙雷菌属(英语:Serratia),是一种革兰氏阴性、兼性厌氧性杆菌,亦是一种条件致病菌,于1819年在意大利
- 益康唑硝酸益康唑(英语:Econazole nitrate)是咪唑类抗真菌药物,被用来治疗足癣、花斑癣和股癣(Tinea cruris)等癣。 药膏商品《Picosone》含有这种物质。
- 吉姆·克拉克詹姆斯·亨利·克拉克(英语:James Henry Clark,1944年3月23日-)是美国企业家和计算机科学家。他创立了几家著名的硅谷科技公司,包括Silicon Graphics、Netscape、myCFO和Healtheon
- 语文语文,包括语和文,即口头语和书面语。中国大陆学校的汉民族语文科目通常被称为语文。日常生活中,语跟文两字并无严格指口头语及书面语而混用之,如英语说明书,中文报导等。清末1904
- Watson, J. D.詹姆斯·杜威·沃森(英语:James Dewey Watson,1928年4月6日-),美国分子生物学家,20世纪分子生物学的牵头人之一。与同僚佛朗西斯·克里克因为共同发现DNA的双螺旋结构,而与莫里斯·
- 保罗·维拉尔保罗·于尔里克·维拉尔(法语:Paul Ulrich Villard,1860年9月28日-1934年1月13日),法国化学家和物理学家。1900年,他在研究镭的辐射时发现了伽马射线。维拉尔退休后离开了巴黎。193
- 托玛斯·杰弗逊托马斯·杰斐逊(英语:Thomas Jefferson,1743年4月13日-1826年7月4日),美利坚合众国第三任总统(1801年─1809年)。同时也是《美国独立宣言》主要起草人,及美国开国元勋中最具影响力者
- 论衡《论衡》,是中国东汉时期思想家王充的重要著作。全书共计十三卷,八十五篇,佚亡一篇。主要阐述了作者无神论的思想观点,对当时社会上谶纬盛行,社会上层和民间流行各种神秘主义进行
- 场地障碍赛场地障碍赛为马术三项赛中的其中一项,于1866年,巴黎举行首届格兰披治场地障碍赛赛,于1900年则确认为奥运会项目。骑手和马匹要求在35米乘60米、45米乘70米或70米乘90米的场地中