首页 >
微分
✍ dations ◷ 2025-11-09 10:18:58 #微分
在数学中,微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。当某些函数
f
{displaystyle textstyle f}
的自变量
x
{displaystyle textstyle x}
有一个微小的改变
h
{displaystyle textstyle h}
时,函数的变化可以分解为两个部分。一个部分是线性部分:在一维情况下,它正比于自变量的变化量
h
{displaystyle textstyle h}
,可以表示成
h
{displaystyle textstyle h}
和一个与
h
{displaystyle textstyle h}
无关,只与函数
f
{displaystyle textstyle f}
及
x
{displaystyle textstyle x}
有关的量的乘积;在更广泛的情况下,它是一个线性映射作用在
h
{displaystyle textstyle h}
上的值。另一部分是比
h
{displaystyle textstyle h}
更高阶的无穷小,也就是说除以
h
{displaystyle textstyle h}
后仍然会趋于零。当改变量
h
{displaystyle textstyle h}
很小时,第二部分可以忽略不计,函数的变化量约等于第一部分,也就是函数在
x
{displaystyle textstyle x}
处的微分,记作
f
′
(
x
)
h
{displaystyle displaystyle f'(x)h}
或
d
f
x
(
h
)
{displaystyle displaystyle {textrm {d}}f_{x}(h)}
。如果一个函数在某处具有以上的性质,就称此函数在该点可微。不是所有的函数的变化量都可以分为以上提到的两个部分。若函数在某一点无法做到可微,便称函数在该点不可微。在古典的微积分学中,微分被定义为变化量的线性部分,在现代的定义中,微分被定义为将自变量的改变量
h
{displaystyle textstyle h}
映射到变化量的线性部分的线性映射
d
f
x
{displaystyle displaystyle {textrm {d}}f_{x}}
。这个映射也被称为切映射。给定的函数在一点的微分如果存在,就一定是唯一的。设函数
y
=
f
(
x
)
{displaystyle y=f(x)}
在某区间
I
{displaystyle {mathcal {I}}}
内有定义。对于
I
{displaystyle {mathcal {I}}}
内一点
x
0
{displaystyle x_{0}}
,当
x
0
{displaystyle x_{0}}
变动到附近的
x
0
+
Δ
x
{displaystyle x_{0}+Delta x}
(也在此区间内)时,如果函数的增量
Δ
y
=
f
(
x
0
+
Δ
x
)
−
f
(
x
0
)
{displaystyle Delta y=f(x_{0}+Delta x)-f(x_{0})}
可表示为
Δ
y
=
A
Δ
x
+
o
(
Δ
x
)
{displaystyle Delta y=ADelta x+o(Delta x)}
(其中
A
{displaystyle A}
是不依赖于
Δ
x
{displaystyle Delta x}
的常数),而
o
(
Δ
x
)
{displaystyle o(Delta x)}
是比
Δ
x
{displaystyle Delta x}
高阶的无穷小,那么称函数
f
(
x
)
{displaystyle f(x)}
在点
x
0
{displaystyle x_{0}}
是可微的,且
A
Δ
x
{displaystyle ADelta x}
称作函数在点
x
0
{displaystyle x_{0}}
相应于自变量增量
Δ
x
{displaystyle Delta x}
的微分,记作
d
y
{displaystyle {textrm {d}}y}
,即
d
y
=
A
Δ
x
{displaystyle {textrm {d}}y=ADelta x}
,
d
y
{displaystyle {textrm {d}}y}
是
Δ
y
{displaystyle Delta y}
的线性主部。:141通常把自变量
x
{displaystyle x}
的增量
Δ
x
{displaystyle Delta x}
称为自变量的微分,记作
d
x
{displaystyle {textrm {d}}x}
,即
d
x
=
Δ
x
{displaystyle {textrm {d}}x=Delta x}
。微分和导数是两个不同的概念。但是,对一元函数来说,可微与可导是完全等价的概念:141。可微的函数,其微分等于导数乘以自变量的微分
d
x
{displaystyle {textrm {d}}x}
,换句话说,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。于是函数
y
=
f
(
x
)
{displaystyle y=f(x)}
的微分又可记作
d
y
=
f
′
(
x
)
d
x
{displaystyle {textrm {d}}y=f'(x){textrm {d}}x}
。设
Δ
x
{displaystyle Delta x}
是曲线
y
=
f
(
x
)
{displaystyle y=f(x)}
上的点
P
{displaystyle P}
在横坐标上的增量,
Δ
y
{displaystyle Delta y}
是曲线在点
P
{displaystyle P}
对应
Δ
x
{displaystyle Delta x}
在纵坐标上的增量,
d
y
{displaystyle {textrm {d}}y}
是曲线在点
P
{displaystyle P}
的切线对应
Δ
x
{displaystyle Delta x}
在纵坐标上的增量。当
|
Δ
x
|
{displaystyle left|Delta xright|}
很小时,
|
Δ
y
−
d
y
|
{displaystyle left|Delta y-{textrm {d}}yright|}
比
|
Δ
x
|
{displaystyle left|Delta xright|}
要小得多(高阶无穷小),因此在点
P
{displaystyle P}
附近,我们可以用切线段来近似代替曲线段。设有函数
f
:
x
↦
x
2
{displaystyle f:xmapsto x^{2}}
,考虑它从某一点
x
{displaystyle x}
变到
x
+
d
x
{displaystyle x+{textrm {d}}x}
。这时,函数的改变量
f
(
x
+
d
x
)
−
f
(
x
)
{displaystyle f(x+{textrm {d}}x)-f(x)}
等于:其中的线性主部:
A
d
x
=
2
x
d
x
{displaystyle Adx=2xdx}
,高阶无穷小是
o
(
d
x
)
=
(
d
x
)
2
{displaystyle o({textrm {d}}x)=({textrm {d}}x)^{2}}
。
因此函数
f
{displaystyle textstyle f}
在点
x
{displaystyle textstyle x}
处的微分是
d
y
=
2
x
d
x
{displaystyle {textrm {d}}y=2x{textrm {d}}x}
。函数的微分与自变量的微分之商
d
y
d
x
=
2
x
=
f
′
(
x
)
{displaystyle {frac {{textrm {d}}y}{{textrm {d}}x}}=2x=f^{prime }(x)}
,等于函数的导数。以下有一例子:
当方程式为
y
=
2
x
2
{displaystyle y=2x^{2}}
时,就会有以下的微分过程。和求导一样,微分有类似的法则。例如,如果设函数
u
{displaystyle u}
、
v
{displaystyle v}
可微,那么:当自变量是多元变量时,导数的概念已经不适用了(尽管可以定义对某个分量的偏导数,但偏导数只对单一自变量微分),但仍然有微分的概念。设
f
{displaystyle f}
是从欧几里得空间Rn(或者任意一个内积空间)中的一个开集
Ω
{displaystyle Omega }
射到Rm的一个函数。对于
Ω
{displaystyle Omega }
中的一点
x
{displaystyle x}
及其在
Ω
{displaystyle Omega }
中的邻域
Λ
{displaystyle Lambda }
中的点
x
+
h
{displaystyle x+h}
。如果存在线性映射
A
{displaystyle A}
使得对任意这样的
x
+
h
{displaystyle x+h}
,那么称函数
f
{displaystyle f}
在点
x
{displaystyle x}
处可微。线性映射
A
{displaystyle A}
叫做
f
{displaystyle f}
在点
x
{displaystyle x}
处的微分,记作
d
f
x
{displaystyle {textrm {d}}f_{x}}
。如果
f
{displaystyle f}
在点
x
{displaystyle x}
处可微,那么它在该点处一定连续,而且在该点的微分只有一个。为了和偏导数区别,多元函数的微分也叫做全微分或全导数。当函数在某个区域的每一点
x
{displaystyle x}
都有微分
d
f
x
{displaystyle {textrm {d}}f_{x}}
时,可以考虑将
x
{displaystyle x}
映射到
d
f
x
{displaystyle {textrm {d}}f_{x}}
的函数:这个函数一般称为微分函数。具体来说,对于一个改变量:
h
=
(
h
1
,
h
2
,
…
,
h
n
)
=
∑
i
=
1
n
h
i
e
i
{displaystyle h=(h_{1},h_{2},ldots ,h_{n})=sum _{i=1}^{n}h_{i}e_{i}}
,微分值:函数
f
:
(
x
,
y
)
↦
(
x
2
+
y
2
,
(
1
−
x
2
−
y
2
)
x
−
y
,
x
−
(
1
−
x
2
−
y
2
)
y
)
{displaystyle f:(x,y)mapsto left(x^{2}+y^{2},(1-x^{2}-y^{2})x-y,x-(1-x^{2}-y^{2})yright)}
是一个从
R
2
{displaystyle mathbb {R} ^{2}}
射到
R
3
{displaystyle mathbb {R} ^{3}}
的函数。它在某一点
(
x
,
y
)
{displaystyle (x,y)}
的雅可比矩阵为:微分为:
d
f
(
x
,
y
)
:
h
↦
J
f
(
x
,
y
)
(
h
)
{displaystyle {textrm {d}}f_{(x,y)}:hmapsto J_{f}(x,y)(h)}
,也就是:如果说微分是导数的一种推广,那么微分形式则是对于微分函数的再推广。微分函数对每个点
x
{displaystyle x}
给出一个近似描述函数性质的线性映射
d
f
x
{displaystyle {textrm {d}}f_{x}}
,而微分形式对区域
D
{displaystyle mathbf {D} }
内的每一点给出一个从该点的切空间映射到值域的斜对称形式:
ω
(
x
)
:
T
D
x
⟶
R
{displaystyle omega (x):mathbf {TD} _{x}longrightarrow mathbb {R} }
。在坐标记法下,可以写成:其中的
d
x
i
{displaystyle {textrm {d}}x^{i}}
是
i
{displaystyle i}
-射影算子,也就是说将一个向量
v
{displaystyle v}
射到它的第
i
{displaystyle i}
个分量
v
i
{displaystyle v^{i}}
的映射。而
d
x
i
1
∧
⋯
∧
d
x
i
k
{displaystyle {textrm {d}}x^{i_{1}}wedge cdots wedge {textrm {d}}x^{i_{k}}}
是满足:的k-形式。特别地,当
f
{displaystyle f}
是一个从Rn射到R 的函数时,可以将
d
f
x
{displaystyle {textrm {d}}f_{x}}
写作:正是上面公式的一个特例。
相关
- 氯霉素氯霉素(Chloramphenicol)是一种抗生素,可用于治疗许多细菌感染症状,包括脑膜炎、瘟疫、霍乱和伤寒等。只有在不能使用其他较安全的抗生素时,才会建议用氯霉素。治疗期间,建议每两
- 肺泡巨噬细胞肺泡巨噬细胞(英语:Alveolar macrophage),是存在于肺间质的特殊巨噬细胞,由迁移到肺的吞噬细胞发育而成,属于单核吞噬细胞系统的一部分。可参与吞噬和清除外来的尘粒或病原并进行
- 复合性原理在数学、语义学和语言哲学中,复合性原理是指,一个复杂表达式的意义是由其各组成部分的意义以及用以结合它们的规则来决定的。复合性原理认为,在有意义的句子中,如果实词部分被从
- 攻城器械古罗马攻城器械是直接师承自古希腊的科技,并为他们带来一次又一次的胜利。而凯撒大帝更是将它的技术含量推到极端,为罗马帝国扩张疆土给予极大的帮助。当时主要的攻城器械为弩
- 自发过程自发过程(英语:spontaneous process),或自发程序,是系统随时间释放自由能、移往自由能更低且更加热力学平衡的能量状态的过程。自由能变化的正负值取决于热力学的测量传统,当系统
- 克里斯琴·B·安芬森克里斯蒂安·伯默尔·安芬森(英语:Christian Boehmer Anfinsen,1916年3月26日-1995年5月14日),出生于美国宾夕法尼亚州莫内森,美国生物化学家,他和斯坦福·摩尔与威廉·霍华德·斯坦
- 美洲原住民神话美洲原住民神话是美洲原住民的神话与故事,由于原住民神话身受萨满巫术文化影响,因此主要信仰与大自然的神灵相当接近,美洲原住民不仅敬畏神明,也敬畏大自然中的一草一木,相信即使
- 定义谬误定义谬误是泛指一系列因定义不当造成的推理问题。探讨定义,尤其是词法定义时,必须考虑其是否恰当。恰当的词法定义,其被定义项与定义项必须等值,如有东西符合定义项却不符合被定
- H指数H指数(H index)是一个混合量化指标,可用于评估研究人员的学术产出数量与学术产出水平。H指数是2005年由美国加利福尼亚大学圣地亚哥分校的物理学家乔治·希尔施提出的。H指数的
- 圆山大饭店圆山大饭店是位于中华民国台北市中山区剑潭山的地标性质中国风饭店,成立于第二次世界大战后,早年为台湾首屈一指的大型国际性饭店。目前所见的宫殿风格建筑于1973年落成,是台北
