嵌入 (数学)

✍ dations ◷ 2025-07-16 05:48:26 #抽象代数,点集拓扑学,微分拓扑学,度量几何,微分几何,函数

数学上,嵌入是指一个数学结构经映射包含到另一个结构中。某个物件称为嵌入到另一个物件中,是指有一个保持结构的单射: →,这个映射就给出了一个嵌入。上述“保持结构”的准确意思,需由所讨论的结构而定。一个保持结构的映射,在范畴论中称为态射。

要表达: →是一个嵌入,有时会使用带钩箭号 f : X Y {\displaystyle f\colon X\hookrightarrow Y} , 之间的一个连续单射: →是一个拓扑嵌入,如果给出与()间的同胚(空间()上的拓扑是由诱导的子空间拓扑。)凡是连续单射的开映射或闭映射都是拓扑嵌入,不过一个嵌入也可能既非开映射也非闭映射:当其像()不是中的开集或闭集时,便发生这种情况。

在微分拓扑中,令, 为光滑流形,而: →为光滑映射。则如果的微分处处皆为单射,则称为一个浸入。此时的嵌入定义为一个符合拓扑嵌入定义的单射浸入,又称为光滑嵌入。换言之,嵌入是微分同胚于其像,所以嵌入的像必是子流形。浸入是一个局部嵌入,即在每点 x M {\displaystyle x\in M} 是紧致流形,则的浸入必是嵌入。

光滑嵌入的一个重要情形是在为 R n {\displaystyle \mathbb {R} ^{n}} 维流形,需多大才保证有从到 R n {\displaystyle \mathbb {R} ^{n}} = 2便足够,而且是最好的上界。例如嵌入一个维的实射影平面便需要 = 2。

如果将光滑嵌入的定义中,为光滑映射的条件放宽为C映射,其中是正整数,而其余条件不变,则称为C嵌入。

在黎曼几何中,设(,), (,)是黎曼流形,一个等距嵌入是一个光滑嵌入: →,令黎曼度量保持不变,即将由拉回等于,就是 g = f ( h ) {\displaystyle g=f^{*}(h)} 中任何一点,及任何两个切向量

都有

设, 为度量空间,映射 f : X Y {\displaystyle f\colon X\to Y} f 1 {\displaystyle f^{-1}} ()上)都是利普希茨连续,则称为双利普希茨嵌入(bi-Lipschitz embedding)。换言之,如果存在常数 L 1 {\displaystyle L\geq 1} 为(-)双利普希茨嵌入。

一个更广义的嵌入是拟对称嵌入(quasisymmetric embedding)。如前设为拓扑嵌入。称为(-)拟对称嵌入,如果存在同胚 η : [ 0 , ) [ 0 , ) {\displaystyle \eta \colon [0,\infty )\to [0,\infty )} (0)=0且为严格递增的连续函数),使得中任何三点, , 若满足

其中 > 0,则有

若是一个-双利普希茨嵌入,可令 η ( t ) = L 2 t {\displaystyle \eta (t)=L^{2}t} 是-拟对称嵌入。

双利普希茨嵌入的一个相关概念是拟等距嵌入。拟等距嵌入虽名为嵌入,却不一定是嵌入,因其未必是单射。

域论上,从一个域到另一个域中的一个嵌入,是一个环同态σ: → 。因为环同态的核是一个理想,而域的理想只有0及整个域本身,又σ(1)=1,故其核不能为整个域,即知核为0。因此这个环同态必定是单态射,而和在中的σ()同构。所以可称两个域之间的任何同态为嵌入。

关于序理论中的嵌入,可参见序嵌入。

相关

  • 骆驼骆驼属(学名:Camelus)通称骆驼,是一种偶蹄目骆驼科的动物,主要有单峰骆驼和双峰骆驼两种,多见于沙漠地带。因其在沙漠以及酷暑、严寒等恶劣自然环境下仍能良好生存的生理特点,沙漠
  • 2016年欧洲杯足球赛2016年欧洲足球锦标赛(英语:2016 UEFA European Championship),通称2016年欧洲杯(UEFA Euro 2016,英文简称Euro 2016),是第 15 届四年一度的欧洲足球锦标赛,由欧洲足联组织。比赛于20
  • 沈立沈立(1007年-1078年),字立之,历阳(今安徽和县)人。祖父沈仁谅始定居历阳。早孤,由母亲养大。宋仁宗天圣八年王拱辰榜进士,历任桐城尉,畿县主薄,有政绩。通判寿州。签书益州判官,提举澶州
  • 郊区郊区(英语:Suburb,台港称近郊,亦称邻近都市区域、市郊)是指城市外围人口较多的区域。通常是商业区较少,而以住宅为主,或者还有相当程度农业活动但属于都市行政辖区的地区。因此在都
  • 纽芬兰自治领纽芬兰(英语:Newfoundland),通称纽芬兰自治领(英语:Dominion of Newfoundland)是一个存在于1907年到1949年期间的英国的一个自治领。自治领位于北美洲东部的大西洋沿岸,其领土范围相
  • 沙里亚法规伊斯兰教法,音译为沙里亚(阿拉伯语:شريعة‎,Šarīʿa,.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicod
  • 放射性尘埃放射性落下灰,也称放射性沉降物、放射性落尘、辐射落尘或原子尘,是核弹爆炸或核反应堆泄漏后从天而降的放射性尘埃,含有大量放射性元素,是一种放射性污染。核弹爆炸产生的辐射尘
  • 秋山准秋山准(1969年10月9日-),本名秋山润,日本职业摔角手,现任全日本职业摔角联盟社长。秋山出身于大阪府和泉市,身高188cm、体重110kg、血型AB型。同时他也是秋山国际贸易股份有限公司
  • 丁姬丁姬(前1世纪?-前5年7月9日),汉哀帝之母,山阳郡瑕丘(今山东省兖州市)人,父为庐江郡太守。丁氏嫁给定陶王刘康为妾。王后张氏无子,只有丁姬在河平四年(前25年)生下刘欣,即哀帝。绥和二年(前
  • 庄文杰庄文杰(英语:Darren),马来西亚人。主持ASTRO AEC的《新闻报报看》,成功打开了知名度。庄文杰的主持节目有《新闻报报看 》、《寻花探草》等。