协变经典场论

✍ dations ◷ 2024-12-23 04:12:23 #微分几何,微分方程,纤维丛,分析力学,拉格朗日力学,场论

近年来,协变经典场论又引起了研究者的兴趣。动力学在这里用有限维空间的在时空中的给定时间点上的场来表述。射流丛现在被认为是这种表述的正确定义域。本文给出一阶经典场论的协变表述的一些几何结构。

本条目记法和射流丛条目所引入的一致。并令 Γ ¯ ( π ) {\displaystyle {\bar {\Gamma }}(\pi )} 表示有紧支撑的 π {\displaystyle \pi \,} 的截面。

一个经典场论数学上可以如下表述

1 {\displaystyle \star 1\,} 代表 M {\displaystyle M\,} 上的体积形式,则 Λ = L 1 {\displaystyle \Lambda =L\star 1\,} ,其中 L : J 1 π R {\displaystyle L:J^{1}\pi \rightarrow \mathbb {R} } 是拉格朗日量函数。我们在 J 1 π {\displaystyle J^{1}\pi \,} 上选择纤维化坐标 { x i , u α , u i α } {\displaystyle \{x^{i},u^{\alpha },u_{i}^{\alpha }\}\,} ,使得

作用量积分定义为

其中 σ Γ ¯ ( π ) {\displaystyle \sigma \in {\bar {\Gamma }}(\pi )} ,并定义于开集 σ ( M ) {\displaystyle \sigma ({\mathcal {M}})\,} ,而 j 1 σ {\displaystyle j^{1}\sigma \,} 代表其第一射流延长(jet prolongation)。

截面 σ Γ ¯ ( π ) {\displaystyle \sigma \in {\bar {\Gamma }}(\pi )\,} 的变分由曲线 σ t = η t σ {\displaystyle \sigma _{t}=\eta _{t}\circ \sigma \,} 给出,其中 η t {\displaystyle \eta _{t}\,} 是一个 E {\displaystyle {\mathcal {E}}\,} 上的 π {\displaystyle \pi \,} -竖直向量场 V {\displaystyle V\,} 的流,它在 M {\displaystyle {\mathcal {M}}\,} 上有紧支撑。截面 σ Γ ¯ ( π ) {\displaystyle \sigma \in {\bar {\Gamma }}(\pi )\,} 称为变分的驻点,如果

这等价于

其中 V 1 {\displaystyle V^{1}\,} 代表 V {\displaystyle V\,} 的第一延长,按李导数的定义。使用嘉当公式, L X = i X d + d i X {\displaystyle {\mathcal {L}}_{X}=i_{X}d+di_{X}\,} , 斯托克斯定理以及 σ {\displaystyle \sigma \,} 的紧支撑,可以证明这等价于

考虑一个 E {\displaystyle {\mathcal {E}}} π {\displaystyle \pi \,} -竖直向量场

其中 β α = β α ( x , u ) {\displaystyle \beta ^{\alpha }=\beta ^{\alpha }(x,u)\,} 。采用切触形式 θ j = d u j u i j d x i {\displaystyle \theta ^{j}=du^{j}-u_{i}^{j}dx^{i}\,} on J 1 π {\displaystyle J^{1}\pi \,} ,我们可以计算 V {\displaystyle V\,} 的第一延长。然后得到

其中 γ i α = γ i α ( x , u α , u i α ) {\displaystyle \gamma _{i}^{\alpha }=\gamma _{i}^{\alpha }(x,u^{\alpha },u_{i}^{\alpha })\,} 。据此,可以证明

因而

分部积分并考虑 σ {\displaystyle \sigma \,} 的紧支撑,临界条件变为

因为 β α {\displaystyle \beta ^{\alpha }\,} 为任意函数,我们得到

这些就是欧拉-拉格朗日方程组。

相关

  • 昌迪加尔†The city of Chandigarh comprises all of the union territory's area.††under Section 4 of the Punjab Reorganisation Act, 1966(英语:Punjab Reorganisation Act, 19
  • 热水热水可以指:
  • 1152年重要事件及趋势重要人物
  • 胡麻芝麻(学名:Sesamum indicum),别名胡麻、脂麻、油麻,是胡麻科胡麻属植物。虽然它的近亲在非洲出现,但品种的自然起源仍然未知。它遍布世界上的热带地区。在温带地区也有种植,比如中
  • 北京市文物保护单位北京市文物保护单位是依照《北京市文物保护管理条例》,由北京市文物局提出,报北京市人民政府批准备案,正式对外公布并竖立标志的北京市级文物保护单位。北京市文物保护单位自19
  • 图莱里县图莱里县(Tulare County)是美国加利福尼亚州中央谷地内的一个县,面积12,533.2平方公里。根据2010年人口普查,本县共有人口368,021人。本县县治为维塞利亚。本县成立于1852年,县名
  • 日本拉面日本拉面(日语: ?)是日式中华料理所使用的面条与面食种类之一,多以切制而非拉制而成。在日本其他常见名称包括“中華そば”。日本最早关于中国面条的记载是明朝遗臣朱舜水流亡
  • 反唇兰反唇兰(学名:)为兰科反唇兰属下的一个种,产于云南。 维基物种中有关反唇兰的数据
  • 新亭车辆基地新亭车辆基地(朝鲜语:신정차량사업소/新亭車輛事業所  */?)是首尔交通公社位于首尔阳川区的一个车辆段,在首尔地铁2号线新亭支线附近。这个车辆段主要用于首尔地铁2号线的2000
  • 476号州际公路476号州际公路(英语:Interstate 476,简称I-476),是美国州际公路系统中76号州际公路东段的一条辅助性公路,位于宾夕法尼亚州,由费城国际机场附近的95号州际公路向北分出,正式名称为郡