藏本模型

✍ dations ◷ 2025-04-26 12:10:39 #偏微分方程

藏本模型(Kuramoto model)是一种用来描述同步的数学模型,由日本物理学家藏本由纪(Kuramoto Yoshiki)首先提出。具体说来,它描述了大量耦合振子的同步行为。这个模型原本是为了描述化学振子、生物振子而构建,后发现具有广泛的应用,例如神经振荡,以及振荡火焰的动力学。惊人的是,一些物理系统的行为也符合这个模型,比如耦合约瑟夫森结的阵列。

这个模型假设,所有振子都是完全相同的或几乎完全相同的,相互之间的耦合很弱、并且任意两个振子之间的相互作用强度取决于它们相位差的正弦。

在藏本模型最常见的版本中,每个振子都有一个固有的自然频率 ω i {\displaystyle \omega _{i}} ,并与所有其它振子以相同的强度耦合。惊人的是,在 N {\displaystyle N\to \infty } 的极限下,通过巧妙的变换并使用平均场方法,这个完全非线性的模型是可以精确求解的。

这个模型最常见的形式由以下方程组给出:

d θ i d t = ω i + K N j = 1 N sin ( θ j θ i ) , i = 1 , , N {\displaystyle {\frac {d\theta _{i}}{dt}}=\omega _{i}+{\frac {K}{N}}\sum _{j=1}^{N}{\sin {(\theta _{j}-\theta _{i})}},\quad i=1,\cdots ,N}

系统由 N {\displaystyle N} 个极限环振子组成, θ i {\displaystyle \theta _{i}} 是第 i {\displaystyle i} 个振子的相位, K {\displaystyle K} 是耦合强度。

也可以在系统中加入噪声。这种情况下,方程变为

d θ i d t = ω i + K N j = 1 N sin ( θ j θ i ) + ζ i , i = 1 , , N {\displaystyle {\frac {d\theta _{i}}{dt}}=\omega _{i}+{\frac {K}{N}}\sum _{j=1}^{N}{\sin {(\theta _{j}-\theta _{i})}}+\zeta _{i},\quad i=1,\cdots ,N}

其中 ζ i {\displaystyle \zeta _{i}} 是涨落,并且是时间的函数。如果考虑白噪声的情况,则:

ζ i ( t ) = 0 , {\displaystyle \langle \zeta _{i}(t)\rangle =0,}

ζ i ( t ) ζ j ( t ) = 2 D δ i j δ ( t t ) {\displaystyle \langle \zeta _{i}(t)\zeta _{j}(t')\rangle =2D\delta _{ij}\delta (t-t')}

其中 D {\displaystyle D} 代表噪声强度。

使得这个模型(至少在 N {\displaystyle N\to \infty } 的极限下)能够精确求解的变换如下所示:

定义“序”参量

R e i ψ = 1 N j = 1 N e i θ j {\displaystyle Re^{i\psi }={\frac {1}{N}}\sum _{j=1}^{N}{e^{i\theta _{j}}}}

R {\displaystyle R} 表征了这群振子的相位相关性, ψ {\displaystyle \psi } 是平均相位。方程两边乘以 e i θ i {\displaystyle e^{-{\text{i}}\theta _{i}}} ,只考虑虚部得到:

d θ i d t = ω i + K R sin ( ψ θ i ) {\displaystyle {\frac {d\theta _{i}}{dt}}=\omega _{i}+KR\sin {(\psi -\theta _{i})}}

因此振子的方程组就不是显式耦合的;相反,序参量支配了系统的行为。通常还会做进一步的变换,变换到一个转动的坐标系,其中所有振子相位的统计平均为零(即 ψ = 0 {\displaystyle \psi =0} )。最终,方程变为:

d θ i d t = ω i K R sin θ i {\displaystyle {\frac {d\theta _{i}}{dt}}=\omega _{i}-KR\sin {\theta _{i}}}

考虑 N {\displaystyle N\to \infty } 的情况。自然频率的分布记为 g ( ω ) {\displaystyle g(\omega )} (假设已经归一化)。设在时刻 t {\displaystyle t} ,在所有自然频率为 ω {\displaystyle \omega } 的振子中,相位为 θ {\displaystyle \theta } 的振子所占比例为 ρ ( θ , ω , t ) {\displaystyle \rho (\theta ,\omega ,t)} 。归一化要求

0 2 π ρ ( θ , ω , t ) d θ = 1 {\displaystyle \int _{0}^{2\pi }{\rho (\theta ,\omega ,t)d\theta }=1}

振子密度的连续性方程为

ρ t + ( ρ v ) θ = 0 {\displaystyle {\frac {\partial \rho }{\partial t}}+{\frac {\partial (\rho v)}{\partial \theta }}=0}

其中 v = ω + K R sin ( ψ θ ) {\displaystyle v=\omega +KR\sin {(\psi -\theta )}} 是振子的漂移速度。

最终,在连续统极限下重新写出序参量。 θ i {\displaystyle \theta _{i}} 应该用系综平均来代替,求和替换为积分,得到

R e i ψ = 0 2 π ρ ( θ , ω , t ) g ( ω ) e i θ d ω d θ {\displaystyle Re^{i\psi }=\int _{0}^{2\pi }{\int _{-\infty }^{\infty }{\rho (\theta ,\omega ,t)g(\omega )e^{i\theta }d\omega }d\theta }}

所有振子随机漂移的不相关态对应均匀分布解 ρ = 1 2 π {\displaystyle \rho ={\frac {1}{2\pi }}} 。这种情况 R = 0 {\displaystyle R=0} ,振子之间没有关联。系统整体处于统计稳定态,尽管每个振子单独来看都在以自然频率不停运动。

当耦合足够强时,可能会出现完全同步的解。在完全同步态中,所有振子以相同频率运动,但相位可以不同。

部分同步是只有一些振子同步,而另一些振子自由漂移的状态。从数学上来说,对锁相的振子

ρ = δ ( θ ψ arcsin ω K R ) {\displaystyle \rho =\delta \left(\theta -\psi -\arcsin {\frac {\omega }{KR}}\right)}

对漂移的振子,

ρ 1 ω K R sin ( θ ψ ) {\displaystyle \rho \propto {\frac {1}{\omega -KR\sin {(\theta -\psi )}}}}

耗散的藏本模型包含在某些保守的哈密顿系统中,哈密顿量具有形式:

H = i = 1 N 1 2 ω i ( q i 2 + p i 2 ) + K 4 N i , j = 1 N ( q i p j q j p i ) ( q j 2 + p j 2 q i 2 p i 2 ) {\displaystyle {\mathcal {H}}=\sum _{i=1}^{N}{{\frac {1}{2}}\omega _{i}(q_{i}^{2}+p_{i}^{2})}+{\frac {K}{4N}}\sum _{i,j=1}^{N}{(q_{i}p_{j}-q_{j}p_{i})(q_{j}^{2}+p_{j}^{2}-q_{i}^{2}-p_{i}^{2})}}

用正则变换变成作用量-角度的形式,作用量为 I i = 1 2 ( q i 2 + p i 2 ) {\displaystyle I_{i}={\frac {1}{2}}(q_{i}^{2}+p_{i}^{2})} ,角度(相位) θ i = arctan q i p i {\displaystyle \theta _{i}=\arctan {\frac {q_{i}}{p_{i}}}} ,在作用量 I i I {\displaystyle I_{i}\equiv I} 为常数的不变流形上就是藏本动力学。变换后的哈密顿量

H = i = 1 N ω i I i K N i = 1 N j = 1 N I j I i ( I j I i ) sin ( θ j θ i ) {\displaystyle {\mathcal {H}}=\sum _{i=1}^{N}{\omega _{i}I_{i}}-{\frac {K}{N}}\sum _{i=1}^{N}{\sum _{j=1}^{N}{{\sqrt {I_{j}I_{i}}}(I_{j}-I_{i})\sin {(\theta _{j}-\theta _{i})}}}}

哈密顿运动方程为

d I i d t = H θ i = 2 K N j = 1 N I j I i ( I j I i ) cos ( θ j θ i ) {\displaystyle {\frac {dI_{i}}{dt}}=-{\frac {\partial {\mathcal {H}}}{\partial \theta _{i}}}=-{\frac {2K}{N}}\sum _{j=1}^{N}{{\sqrt {I_{j}I_{i}}}(I_{j}-I_{i})\cos {(\theta _{j}-\theta _{i})}}}

d θ i d t = H I i = ω i + K N j = 1 N I j / I i ( I i + I j ) sin ( θ j θ i ) {\displaystyle {\frac {d\theta _{i}}{dt}}={\frac {\partial {\mathcal {H}}}{\partial I_{i}}}=\omega _{i}+{\frac {K}{N}}\sum _{j=1}^{N}{{\sqrt {I_{j}/I_{i}}}(I_{i}+I_{j})\sin {(\theta _{j}-\theta _{i})}}}

因为 d I i d t = 0 {\displaystyle {\frac {dI_{i}}{dt}}=0} ,所以 I i = I {\displaystyle I_{i}=I} 确定的流形是不变的,并且相位动力学 d θ i d t {\displaystyle {\frac {d\theta _{i}}{dt}}} 就是藏本模型的动力学。这类哈密顿系统描述了某些量子-经典系统,包括玻色-爱因斯坦凝聚。

模型有两种类型的变体,一种改变模型的拓扑结构,另一种改变耦合函数的形式。

除了具有全连拓扑的原始模型,足够稠密的复杂网络拓扑也可以用同样的平均场处理。而对于局域的行为,例如链形或环形网络上的情况,不能再使用经典的平均场方法,所以只能具体问题具体分析,尽可能利用对称性获取解的信息。

藏本把两个振子之间的相位相互作用用第1个傅里叶分量来近似,即

相关

  • 马里科帕马里科帕县(英语:Maricopa County 发音: /ˌmærᵻˈkoʊpə/ MARR-i-KOH-pə)是美国亚利桑那州中西部的一个县。马里科帕县的总面积为23,891平方公里。根据2010年人口普查,马里
  • 弗里德里希一世 (符腾堡)腓特烈一世(Friedrich I.,1754年11月6日-1816年10月30日),全名腓特烈·威廉·卡尔(Friedrich Wilhelm Karl),1798年继承父位成为符腾堡公爵,称腓特烈三世;1803年升为符腾堡选侯,1806年
  • 中国金鹰电视艺术节中国金鹰电视艺术节(简称金鹰节),由中国文学艺术界联合会和中国电视艺术家协会、湖南省人民政府和湖南省广播电视局联合主办,湖南电广传媒(即湖南电广传媒股份有限公司)承办的中国
  • 罗尔德·希尔丁·弗里克塞尔罗尔德·希尔丁·弗里克塞尔(1934年2月18日-1974年5月18日,Roald Hilding Fryxell)是前一位美国教育家、地质学家暨考古学家。罗尔德·希尔丁·弗里克塞尔的父亲弗里肖夫·弗里
  • 甜菜头甜菜头(beetroot)也称为红菜头,是植物甜菜的轴根(英语:taproot)。是甜菜的栽培品种之一,种植的目的是为了其可食用的轴根以及叶子。在生物分类学上的名称为 subsp. Conditiva Grou
  • 恩拉沃塔冰川坐标:64°41′00″S 60°48′10″W / 64.68333°S 60.80278°W / -64.68333; -60.80278恩拉沃塔冰川(保加利亚语:Енравота),是南极洲的冰川,位于葛拉汉地的努登舍尔德海岸
  • 有限状态向量量化器有限状态VQ(Finite state vector quantization, FSVQ)是有记忆性的VQ(Vector quantization, VQ),它可以用一个有限状态机(Finite-state machine)来描述,其中每一个状态各代表一个分
  • 五凤镇五凤镇,是中华人民共和国四川省成都市金堂县下辖的一个乡镇级行政单位。五凤镇下辖以下地区:五凤溪社区、罗家坝社区、金凤村、金箱村、白岩村、玉凤村、青凤村、白凤村和小凤
  • 毕朔望毕朔望(1918年3月17日-1999年),原名庆杭,男,江苏仪征人,中国作家、翻译家,曾任中华诗词学会副会长。祖父毕畏三,父亲毕倚虹,兄长毕季龙。
  • 真因子和数列选择一个正整数 k {\displaystyle k} 作为一个数列的开首,数列的之后的项都是上一项的真因子之和(因数函数