藏本模型

✍ dations ◷ 2025-08-21 21:17:39 #偏微分方程

藏本模型(Kuramoto model)是一种用来描述同步的数学模型,由日本物理学家藏本由纪(Kuramoto Yoshiki)首先提出。具体说来,它描述了大量耦合振子的同步行为。这个模型原本是为了描述化学振子、生物振子而构建,后发现具有广泛的应用,例如神经振荡,以及振荡火焰的动力学。惊人的是,一些物理系统的行为也符合这个模型,比如耦合约瑟夫森结的阵列。

这个模型假设,所有振子都是完全相同的或几乎完全相同的,相互之间的耦合很弱、并且任意两个振子之间的相互作用强度取决于它们相位差的正弦。

在藏本模型最常见的版本中,每个振子都有一个固有的自然频率 ω i {\displaystyle \omega _{i}} ,并与所有其它振子以相同的强度耦合。惊人的是,在 N {\displaystyle N\to \infty } 的极限下,通过巧妙的变换并使用平均场方法,这个完全非线性的模型是可以精确求解的。

这个模型最常见的形式由以下方程组给出:

d θ i d t = ω i + K N j = 1 N sin ( θ j θ i ) , i = 1 , , N {\displaystyle {\frac {d\theta _{i}}{dt}}=\omega _{i}+{\frac {K}{N}}\sum _{j=1}^{N}{\sin {(\theta _{j}-\theta _{i})}},\quad i=1,\cdots ,N}

系统由 N {\displaystyle N} 个极限环振子组成, θ i {\displaystyle \theta _{i}} 是第 i {\displaystyle i} 个振子的相位, K {\displaystyle K} 是耦合强度。

也可以在系统中加入噪声。这种情况下,方程变为

d θ i d t = ω i + K N j = 1 N sin ( θ j θ i ) + ζ i , i = 1 , , N {\displaystyle {\frac {d\theta _{i}}{dt}}=\omega _{i}+{\frac {K}{N}}\sum _{j=1}^{N}{\sin {(\theta _{j}-\theta _{i})}}+\zeta _{i},\quad i=1,\cdots ,N}

其中 ζ i {\displaystyle \zeta _{i}} 是涨落,并且是时间的函数。如果考虑白噪声的情况,则:

ζ i ( t ) = 0 , {\displaystyle \langle \zeta _{i}(t)\rangle =0,}

ζ i ( t ) ζ j ( t ) = 2 D δ i j δ ( t t ) {\displaystyle \langle \zeta _{i}(t)\zeta _{j}(t')\rangle =2D\delta _{ij}\delta (t-t')}

其中 D {\displaystyle D} 代表噪声强度。

使得这个模型(至少在 N {\displaystyle N\to \infty } 的极限下)能够精确求解的变换如下所示:

定义“序”参量

R e i ψ = 1 N j = 1 N e i θ j {\displaystyle Re^{i\psi }={\frac {1}{N}}\sum _{j=1}^{N}{e^{i\theta _{j}}}}

R {\displaystyle R} 表征了这群振子的相位相关性, ψ {\displaystyle \psi } 是平均相位。方程两边乘以 e i θ i {\displaystyle e^{-{\text{i}}\theta _{i}}} ,只考虑虚部得到:

d θ i d t = ω i + K R sin ( ψ θ i ) {\displaystyle {\frac {d\theta _{i}}{dt}}=\omega _{i}+KR\sin {(\psi -\theta _{i})}}

因此振子的方程组就不是显式耦合的;相反,序参量支配了系统的行为。通常还会做进一步的变换,变换到一个转动的坐标系,其中所有振子相位的统计平均为零(即 ψ = 0 {\displaystyle \psi =0} )。最终,方程变为:

d θ i d t = ω i K R sin θ i {\displaystyle {\frac {d\theta _{i}}{dt}}=\omega _{i}-KR\sin {\theta _{i}}}

考虑 N {\displaystyle N\to \infty } 的情况。自然频率的分布记为 g ( ω ) {\displaystyle g(\omega )} (假设已经归一化)。设在时刻 t {\displaystyle t} ,在所有自然频率为 ω {\displaystyle \omega } 的振子中,相位为 θ {\displaystyle \theta } 的振子所占比例为 ρ ( θ , ω , t ) {\displaystyle \rho (\theta ,\omega ,t)} 。归一化要求

0 2 π ρ ( θ , ω , t ) d θ = 1 {\displaystyle \int _{0}^{2\pi }{\rho (\theta ,\omega ,t)d\theta }=1}

振子密度的连续性方程为

ρ t + ( ρ v ) θ = 0 {\displaystyle {\frac {\partial \rho }{\partial t}}+{\frac {\partial (\rho v)}{\partial \theta }}=0}

其中 v = ω + K R sin ( ψ θ ) {\displaystyle v=\omega +KR\sin {(\psi -\theta )}} 是振子的漂移速度。

最终,在连续统极限下重新写出序参量。 θ i {\displaystyle \theta _{i}} 应该用系综平均来代替,求和替换为积分,得到

R e i ψ = 0 2 π ρ ( θ , ω , t ) g ( ω ) e i θ d ω d θ {\displaystyle Re^{i\psi }=\int _{0}^{2\pi }{\int _{-\infty }^{\infty }{\rho (\theta ,\omega ,t)g(\omega )e^{i\theta }d\omega }d\theta }}

所有振子随机漂移的不相关态对应均匀分布解 ρ = 1 2 π {\displaystyle \rho ={\frac {1}{2\pi }}} 。这种情况 R = 0 {\displaystyle R=0} ,振子之间没有关联。系统整体处于统计稳定态,尽管每个振子单独来看都在以自然频率不停运动。

当耦合足够强时,可能会出现完全同步的解。在完全同步态中,所有振子以相同频率运动,但相位可以不同。

部分同步是只有一些振子同步,而另一些振子自由漂移的状态。从数学上来说,对锁相的振子

ρ = δ ( θ ψ arcsin ω K R ) {\displaystyle \rho =\delta \left(\theta -\psi -\arcsin {\frac {\omega }{KR}}\right)}

对漂移的振子,

ρ 1 ω K R sin ( θ ψ ) {\displaystyle \rho \propto {\frac {1}{\omega -KR\sin {(\theta -\psi )}}}}

耗散的藏本模型包含在某些保守的哈密顿系统中,哈密顿量具有形式:

H = i = 1 N 1 2 ω i ( q i 2 + p i 2 ) + K 4 N i , j = 1 N ( q i p j q j p i ) ( q j 2 + p j 2 q i 2 p i 2 ) {\displaystyle {\mathcal {H}}=\sum _{i=1}^{N}{{\frac {1}{2}}\omega _{i}(q_{i}^{2}+p_{i}^{2})}+{\frac {K}{4N}}\sum _{i,j=1}^{N}{(q_{i}p_{j}-q_{j}p_{i})(q_{j}^{2}+p_{j}^{2}-q_{i}^{2}-p_{i}^{2})}}

用正则变换变成作用量-角度的形式,作用量为 I i = 1 2 ( q i 2 + p i 2 ) {\displaystyle I_{i}={\frac {1}{2}}(q_{i}^{2}+p_{i}^{2})} ,角度(相位) θ i = arctan q i p i {\displaystyle \theta _{i}=\arctan {\frac {q_{i}}{p_{i}}}} ,在作用量 I i I {\displaystyle I_{i}\equiv I} 为常数的不变流形上就是藏本动力学。变换后的哈密顿量

H = i = 1 N ω i I i K N i = 1 N j = 1 N I j I i ( I j I i ) sin ( θ j θ i ) {\displaystyle {\mathcal {H}}=\sum _{i=1}^{N}{\omega _{i}I_{i}}-{\frac {K}{N}}\sum _{i=1}^{N}{\sum _{j=1}^{N}{{\sqrt {I_{j}I_{i}}}(I_{j}-I_{i})\sin {(\theta _{j}-\theta _{i})}}}}

哈密顿运动方程为

d I i d t = H θ i = 2 K N j = 1 N I j I i ( I j I i ) cos ( θ j θ i ) {\displaystyle {\frac {dI_{i}}{dt}}=-{\frac {\partial {\mathcal {H}}}{\partial \theta _{i}}}=-{\frac {2K}{N}}\sum _{j=1}^{N}{{\sqrt {I_{j}I_{i}}}(I_{j}-I_{i})\cos {(\theta _{j}-\theta _{i})}}}

d θ i d t = H I i = ω i + K N j = 1 N I j / I i ( I i + I j ) sin ( θ j θ i ) {\displaystyle {\frac {d\theta _{i}}{dt}}={\frac {\partial {\mathcal {H}}}{\partial I_{i}}}=\omega _{i}+{\frac {K}{N}}\sum _{j=1}^{N}{{\sqrt {I_{j}/I_{i}}}(I_{i}+I_{j})\sin {(\theta _{j}-\theta _{i})}}}

因为 d I i d t = 0 {\displaystyle {\frac {dI_{i}}{dt}}=0} ,所以 I i = I {\displaystyle I_{i}=I} 确定的流形是不变的,并且相位动力学 d θ i d t {\displaystyle {\frac {d\theta _{i}}{dt}}} 就是藏本模型的动力学。这类哈密顿系统描述了某些量子-经典系统,包括玻色-爱因斯坦凝聚。

模型有两种类型的变体,一种改变模型的拓扑结构,另一种改变耦合函数的形式。

除了具有全连拓扑的原始模型,足够稠密的复杂网络拓扑也可以用同样的平均场处理。而对于局域的行为,例如链形或环形网络上的情况,不能再使用经典的平均场方法,所以只能具体问题具体分析,尽可能利用对称性获取解的信息。

藏本把两个振子之间的相位相互作用用第1个傅里叶分量来近似,即

相关

  • 成都中医药大学成都中医药大学位于中国成都市,前身是1956年8月创建的成都中医学院,是中国最早创办的中医学院之一,首任校长为李斯炽,现任校长为余曙光。成都中医药大学是一所以中医药学科为主
  • 圣安寺圣安寺,又称圣安古寺,为湖南岳阳一座佛教寺院。水不在深洞庭百尺容纳四水山非于高古刹千年普照三湘。该寺始建于唐朝初年,为高僧无姓所住,宰相杨炎常来往于该寺,后由京兆尹杨凭捐
  • 止部止部,为汉字索引中的部首之一,康熙字典214个部首中的第七十七个(四划的则为第十七个)。就繁体和简体中文中,止部归于四划部首。止部通常是从上、下、左方均可为部字。且无其他部
  • 长春市 (中华人民共和国直辖市)长春直辖市,中华人民共和国已撤消的直辖市。1949年时,中国大陆共设有12个直辖市,分别为:南京、上海、武汉(今武汉三镇)、鞍山、抚顺、沈阳、本溪、西安、北平(今北京)、天津、重庆、
  • 上温德山坐标:47°20′34″N 7°34′47″E / 47.34278°N 7.57972°E / 47.34278; 7.57972上温德山(Hohe Winde),(Hohe Winde)是瑞士的山峰,位于该国北部,由索洛图恩州负责管辖,属于汝拉山的
  • 房凤友房凤友(1941年-),天津市人,中华人民共和国政治人物。1961年,就学于河北北京师范学院历史系历史专业,毕业后担任河北日报社编辑、调研组副组长。1975年,升任河北省委办公厅副主任。后
  • BirdyBirdy,昵称为鸟车,由Riese und Müller所设计的折叠车,1995年时由生产。这项设计在1993年获 Hessian Innovation Prize,并且在1994的 IFMA 展及 Eurobike 展中展出,获得不错评价
  • 1850年西昌地震1850年西昌地震,是指发生在1850年9月12日(清道光三十年八月初七日)中国四川西昌的一场7.5级地震,震中位置北纬27.7°,东经102.4°。1850年9月12日,西昌忽然地震,地下雷鸣,阖城号呼鼎
  • 狄奥尼西乌斯狄奥尼西乌斯(希腊语:Διονύσιος ὁ Χαλκοῦς),约活动于公元前5世纪前后。古希腊挽歌体诗人之一,曾参加过图里伊的殖民活动。他为宴饮所作的诗歌现仅存有残篇。他
  • 宋玉珠宋玉珠(朝鲜语:송옥주/宋玉珠 ,1965年12月20日-),大韩民国自由派政治人物,第20到21届国会议员。