藏本模型

✍ dations ◷ 2025-04-02 16:50:34 #偏微分方程

藏本模型(Kuramoto model)是一种用来描述同步的数学模型,由日本物理学家藏本由纪(Kuramoto Yoshiki)首先提出。具体说来,它描述了大量耦合振子的同步行为。这个模型原本是为了描述化学振子、生物振子而构建,后发现具有广泛的应用,例如神经振荡,以及振荡火焰的动力学。惊人的是,一些物理系统的行为也符合这个模型,比如耦合约瑟夫森结的阵列。

这个模型假设,所有振子都是完全相同的或几乎完全相同的,相互之间的耦合很弱、并且任意两个振子之间的相互作用强度取决于它们相位差的正弦。

在藏本模型最常见的版本中,每个振子都有一个固有的自然频率 ω i {\displaystyle \omega _{i}} ,并与所有其它振子以相同的强度耦合。惊人的是,在 N {\displaystyle N\to \infty } 的极限下,通过巧妙的变换并使用平均场方法,这个完全非线性的模型是可以精确求解的。

这个模型最常见的形式由以下方程组给出:

d θ i d t = ω i + K N j = 1 N sin ( θ j θ i ) , i = 1 , , N {\displaystyle {\frac {d\theta _{i}}{dt}}=\omega _{i}+{\frac {K}{N}}\sum _{j=1}^{N}{\sin {(\theta _{j}-\theta _{i})}},\quad i=1,\cdots ,N}

系统由 N {\displaystyle N} 个极限环振子组成, θ i {\displaystyle \theta _{i}} 是第 i {\displaystyle i} 个振子的相位, K {\displaystyle K} 是耦合强度。

也可以在系统中加入噪声。这种情况下,方程变为

d θ i d t = ω i + K N j = 1 N sin ( θ j θ i ) + ζ i , i = 1 , , N {\displaystyle {\frac {d\theta _{i}}{dt}}=\omega _{i}+{\frac {K}{N}}\sum _{j=1}^{N}{\sin {(\theta _{j}-\theta _{i})}}+\zeta _{i},\quad i=1,\cdots ,N}

其中 ζ i {\displaystyle \zeta _{i}} 是涨落,并且是时间的函数。如果考虑白噪声的情况,则:

ζ i ( t ) = 0 , {\displaystyle \langle \zeta _{i}(t)\rangle =0,}

ζ i ( t ) ζ j ( t ) = 2 D δ i j δ ( t t ) {\displaystyle \langle \zeta _{i}(t)\zeta _{j}(t')\rangle =2D\delta _{ij}\delta (t-t')}

其中 D {\displaystyle D} 代表噪声强度。

使得这个模型(至少在 N {\displaystyle N\to \infty } 的极限下)能够精确求解的变换如下所示:

定义“序”参量

R e i ψ = 1 N j = 1 N e i θ j {\displaystyle Re^{i\psi }={\frac {1}{N}}\sum _{j=1}^{N}{e^{i\theta _{j}}}}

R {\displaystyle R} 表征了这群振子的相位相关性, ψ {\displaystyle \psi } 是平均相位。方程两边乘以 e i θ i {\displaystyle e^{-{\text{i}}\theta _{i}}} ,只考虑虚部得到:

d θ i d t = ω i + K R sin ( ψ θ i ) {\displaystyle {\frac {d\theta _{i}}{dt}}=\omega _{i}+KR\sin {(\psi -\theta _{i})}}

因此振子的方程组就不是显式耦合的;相反,序参量支配了系统的行为。通常还会做进一步的变换,变换到一个转动的坐标系,其中所有振子相位的统计平均为零(即 ψ = 0 {\displaystyle \psi =0} )。最终,方程变为:

d θ i d t = ω i K R sin θ i {\displaystyle {\frac {d\theta _{i}}{dt}}=\omega _{i}-KR\sin {\theta _{i}}}

考虑 N {\displaystyle N\to \infty } 的情况。自然频率的分布记为 g ( ω ) {\displaystyle g(\omega )} (假设已经归一化)。设在时刻 t {\displaystyle t} ,在所有自然频率为 ω {\displaystyle \omega } 的振子中,相位为 θ {\displaystyle \theta } 的振子所占比例为 ρ ( θ , ω , t ) {\displaystyle \rho (\theta ,\omega ,t)} 。归一化要求

0 2 π ρ ( θ , ω , t ) d θ = 1 {\displaystyle \int _{0}^{2\pi }{\rho (\theta ,\omega ,t)d\theta }=1}

振子密度的连续性方程为

ρ t + ( ρ v ) θ = 0 {\displaystyle {\frac {\partial \rho }{\partial t}}+{\frac {\partial (\rho v)}{\partial \theta }}=0}

其中 v = ω + K R sin ( ψ θ ) {\displaystyle v=\omega +KR\sin {(\psi -\theta )}} 是振子的漂移速度。

最终,在连续统极限下重新写出序参量。 θ i {\displaystyle \theta _{i}} 应该用系综平均来代替,求和替换为积分,得到

R e i ψ = 0 2 π ρ ( θ , ω , t ) g ( ω ) e i θ d ω d θ {\displaystyle Re^{i\psi }=\int _{0}^{2\pi }{\int _{-\infty }^{\infty }{\rho (\theta ,\omega ,t)g(\omega )e^{i\theta }d\omega }d\theta }}

所有振子随机漂移的不相关态对应均匀分布解 ρ = 1 2 π {\displaystyle \rho ={\frac {1}{2\pi }}} 。这种情况 R = 0 {\displaystyle R=0} ,振子之间没有关联。系统整体处于统计稳定态,尽管每个振子单独来看都在以自然频率不停运动。

当耦合足够强时,可能会出现完全同步的解。在完全同步态中,所有振子以相同频率运动,但相位可以不同。

部分同步是只有一些振子同步,而另一些振子自由漂移的状态。从数学上来说,对锁相的振子

ρ = δ ( θ ψ arcsin ω K R ) {\displaystyle \rho =\delta \left(\theta -\psi -\arcsin {\frac {\omega }{KR}}\right)}

对漂移的振子,

ρ 1 ω K R sin ( θ ψ ) {\displaystyle \rho \propto {\frac {1}{\omega -KR\sin {(\theta -\psi )}}}}

耗散的藏本模型包含在某些保守的哈密顿系统中,哈密顿量具有形式:

H = i = 1 N 1 2 ω i ( q i 2 + p i 2 ) + K 4 N i , j = 1 N ( q i p j q j p i ) ( q j 2 + p j 2 q i 2 p i 2 ) {\displaystyle {\mathcal {H}}=\sum _{i=1}^{N}{{\frac {1}{2}}\omega _{i}(q_{i}^{2}+p_{i}^{2})}+{\frac {K}{4N}}\sum _{i,j=1}^{N}{(q_{i}p_{j}-q_{j}p_{i})(q_{j}^{2}+p_{j}^{2}-q_{i}^{2}-p_{i}^{2})}}

用正则变换变成作用量-角度的形式,作用量为 I i = 1 2 ( q i 2 + p i 2 ) {\displaystyle I_{i}={\frac {1}{2}}(q_{i}^{2}+p_{i}^{2})} ,角度(相位) θ i = arctan q i p i {\displaystyle \theta _{i}=\arctan {\frac {q_{i}}{p_{i}}}} ,在作用量 I i I {\displaystyle I_{i}\equiv I} 为常数的不变流形上就是藏本动力学。变换后的哈密顿量

H = i = 1 N ω i I i K N i = 1 N j = 1 N I j I i ( I j I i ) sin ( θ j θ i ) {\displaystyle {\mathcal {H}}=\sum _{i=1}^{N}{\omega _{i}I_{i}}-{\frac {K}{N}}\sum _{i=1}^{N}{\sum _{j=1}^{N}{{\sqrt {I_{j}I_{i}}}(I_{j}-I_{i})\sin {(\theta _{j}-\theta _{i})}}}}

哈密顿运动方程为

d I i d t = H θ i = 2 K N j = 1 N I j I i ( I j I i ) cos ( θ j θ i ) {\displaystyle {\frac {dI_{i}}{dt}}=-{\frac {\partial {\mathcal {H}}}{\partial \theta _{i}}}=-{\frac {2K}{N}}\sum _{j=1}^{N}{{\sqrt {I_{j}I_{i}}}(I_{j}-I_{i})\cos {(\theta _{j}-\theta _{i})}}}

d θ i d t = H I i = ω i + K N j = 1 N I j / I i ( I i + I j ) sin ( θ j θ i ) {\displaystyle {\frac {d\theta _{i}}{dt}}={\frac {\partial {\mathcal {H}}}{\partial I_{i}}}=\omega _{i}+{\frac {K}{N}}\sum _{j=1}^{N}{{\sqrt {I_{j}/I_{i}}}(I_{i}+I_{j})\sin {(\theta _{j}-\theta _{i})}}}

因为 d I i d t = 0 {\displaystyle {\frac {dI_{i}}{dt}}=0} ,所以 I i = I {\displaystyle I_{i}=I} 确定的流形是不变的,并且相位动力学 d θ i d t {\displaystyle {\frac {d\theta _{i}}{dt}}} 就是藏本模型的动力学。这类哈密顿系统描述了某些量子-经典系统,包括玻色-爱因斯坦凝聚。

模型有两种类型的变体,一种改变模型的拓扑结构,另一种改变耦合函数的形式。

除了具有全连拓扑的原始模型,足够稠密的复杂网络拓扑也可以用同样的平均场处理。而对于局域的行为,例如链形或环形网络上的情况,不能再使用经典的平均场方法,所以只能具体问题具体分析,尽可能利用对称性获取解的信息。

藏本把两个振子之间的相位相互作用用第1个傅里叶分量来近似,即

相关

  • 广西医科大学广西医科大学是中国广西南宁市的一所全日制本科公办省属普通高等学校,以医学类专业为特色。1934年11月21日,广西省立医学院在南宁市创建。1940年校址迁至桂林。 1949年11月,改
  • 保留及列外事项政治主题在英国,保留事项和例外事项是指被英国国会保留的其在苏格兰、北爱尔兰和威尔士进行立法所拥有权利的事项。联合王国位于威斯敏斯特的中央政府下放某些领域的权力给这
  • 程逸府 small(乌达腊迪府)/small程逸府(泰语:จังหวัดอุตรดิตถ์,皇家转写:Changwat Uttaradit,泰语发音:),或音译作乌达腊迪府,是泰国北部的一个府,与彭世洛府、素可泰府、帕府、难府相邻。东邻老挝,首
  • 夏洛特·金的遭遇《夏洛特·金的遭遇》(英语:)是美国电视医疗剧《私人诊所》第四季的第七集,也是全剧的第61集,由珊达·莱梅斯编剧,阿利森·利迪-布朗执导,于2010年11月4日经美国广播公司在美国首播
  • 丁毅 (明朝)丁毅,字德刚,江浦(今属江苏)人。明朝医学家。丁凤的先辈。一天在路上看到出殡队伍,他见到棺材底下有流血,惊讶说:“此生人血也”。发现棺中的死者是一名孕妇。他用针刺入死者胸口,死
  • 王剑岳王剑岳(1906年-1944年6月10日),原名王师,湖南澧县人,毕业于黄埔军校五期工兵科。历任国民革命军连长、团长、大队长、总队长。1944年任陆军8师少将副师长,1944年6月10日阵亡于河南
  • 弗拉斯·雅科夫列维奇·丘巴尔弗拉斯·雅科夫列维奇·丘巴尔(俄语:Вла́с Я́ковлевич Чуба́рь,1891年2月10日(22日)-1939年2月26日)乌克兰人,苏联党和国家领导人。1891年,生于叶卡捷琳诺斯拉
  • NTFSNTFS(英语:New Technology File System),是Microsoft公司开发的专用文件系统,从Windows NT 3.1开始成为Windows NT家族的标准文件系统。NTFS取代FAT(文件分配表)和HPFS(高性能文件系
  • 天谷宗一郎天谷 宗一郎(あまや そういちろう、1983年11月8日-)、福井县鲭江市出身的职业棒球选手外野手。目前效力于中央联盟广岛东洋鲤鱼。74 大野豊(调度兼投手) | 82 浅井树(打撃) | 75 町
  • 约翰尼·李·米勒强纳森·“强尼”·李·米勒(英语:Jonathan "Jonny" Lee Miller,1972年11月15日-),英国演员。他在1983年就开始演出电影,作品包括了《迷幻列车》(Trainspotting)、《网络骇客(英语:Hack