祖冲之

✍ dations ◷ 2025-12-11 01:32:31 #祖冲之
祖冲之(429年-500年),字文远,范阳郡逎县(今河北省保定市涞水县)人,刘宋时代数学家、天文学家。祖冲之的主要成就在数学、天文历法和机械制造三个领域。祖冲之的儿子祖暅之也是数学家。祖家历代都对天文历法素有研究,祖冲之从小就有机会接触天文、数学知识。祖冲之青年时,就得到博学多才的名誉,宋孝武帝听说后,派他到“华林学省”做研究工作。461年,他在南徐州(今江苏镇江)刺史府里担任从事,先后任南徐州从事史、公府参军。公元464年他调至娄县(今江苏昆山东北)任县令。在此期间他编制了《大明历》,计算了圆周率。刘宋末年,祖冲之回到建康任谒者仆射,此后直到刘宋灭亡一段时间后,他花了较大精力来研究机械制造。494年到498年之间,他在南齐朝廷担任长水校尉一职,受四品俸禄。在数学上,祖冲之研究过《九章算术》和刘徽所做的注解,给刘徽的《重差》作过注解。他还著有《缀术》一书,汇集了祖冲之父子的数学研究成果。这本书内容深奥,以至“学官莫能究其深奥,故废而不理”。《缀术》在唐代被收入《算经十书》,成为唐代国子监算学课本,当时学习《缀术》需要四年的时间,可见《缀术》的艰深。《缀术》曾经传至朝鲜和日本,但到北宋时这部书就已轶失。人们只能通过其他文献了解祖冲之的部分工作:在《隋书·律历志》中留有小段祖冲之关于圆周率工作的记载;唐代李淳风在《九章算术》注文中记载了祖冲之和儿子祖暅求球体积的方法。祖冲之还研究过“开差幂”和“开差立”问题,涉及二次方程和三次方程的求根问题。遗留下来的祖冲之的数学贡献主要有他对圆周率的计算结果和球体体积的计算公式。据《隋书·律历志》记载,祖冲之以“以直径一亿为一丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒二限之间。密率,圆径一百一十三,圆周三百五十五。约率,圆径七,周二十二。”,以此为直径求圆周率,求得盈数(即过剩的近似值)为 3.1415927 {displaystyle 3.1415927} ;肭数(即不足的近似值)为 3.1415926 {displaystyle 3.1415926} ,圆周率的真值介于盈肭两数之间。《隋书》没有具体说明祖冲之是用什么方法计算出盈肭两数的。一般认为,祖冲之采用的是刘徽割圆术分割到24576边形,又用刘徽圆周率不等式得祖冲之著名的圆周率不等式: 3.1415926 < π < 3.1415927 {displaystyle 3.1415926<pi <3.1415927} 。祖冲之的这一结果精确到小数点后第7位,直到一千多年后才由15世纪的阿拉伯数学家阿尔·卡西以17位有效数字打破此记录。按照当时计算使用分数的习惯,祖冲之还采用了两个分数值的圆周率:“约率” 22 7 {displaystyle {tfrac {22}{7}}} (或称之为“疏率”)以及“密率” 355 113 = 3.141592920354 {displaystyle {tfrac {355}{113}}=3.141592920354} 。在分母<16600的所有整分数中,密率的比值最接近圆周率。祖冲之可能利用何承天的调日法求得圆周率的约率和密率。数学家华罗庚曾认为密率的求得,说明祖冲之可能已经掌握了连分数的概念。日本数学家三上义夫说,“约率 π = 22 7 {displaystyle pi ={tfrac {22}{7}}} ,无非是几百年前希腊数学家阿基米德已经得到的数值,但是 π = 355 113 {displaystyle pi ={tfrac {355}{113}}} 这个分数,却是翻遍古希腊,古印度和阿拉伯的数学文献都找不到的分数,希腊人肯定不知道它;在欧洲直到1586年才由荷兰人安托尼斯宗(Adriaan Anthoniszoon)求出了 355 113 {displaystyle {tfrac {355}{113}}} 这个比值。因此,中国人掌握这个非凡的圆周率分数比欧洲早出整整一千年之久”。为纪念这位伟大的中国古代数学家,三上义夫要求把 355 113 {displaystyle 355 over 113} 称为“祖率”。祖冲之还和儿子祖暅之一起,用巧妙的方法解决了球体体积的计算问题。《九章算术》中认为,球体的外切圆柱体积与球体体积之比等于正方形与其内切圆面积之比,刘徽在他为《九章算术》作的注释中指出,原书的说法是不正确的,只有“牟合方盖”(垂直相交的两个圆柱体的共同部分的体积)与球体积之比,才正好等于正方形与其内切圆的面积之比。但刘徽没有给出“牟合方盖”的体积公式,所以也就得不出球体的体积公式。祖冲之父子采用“幂势既同,则积不容异。”(即“等高处横截面积常相等的两个立体,其体积也必然相等”)这一原理,求出了“牟合方盖”的体积,而球体体积等于 π 4 {displaystyle pi over 4} 乘以“牟合方盖”体积,从而最终算出球体积为 π d 3 6 {displaystyle pi d^{3} over 6} ( d {displaystyle d} 为球直径)。祖冲之父子所采用的“幂势既同,则积不容异”这一原理,在欧洲由意大利数学家卡瓦列里于17世纪重新发现,所以西文文献一般称该原理为卡瓦列里原理。为了纪念祖冲之父子发现这一原理的重大贡献,人们也称该原理为“祖暅原理”。祖冲之在天文历法方面的成就,大都包含在他所编制的《大明历》及为《大明历》所写的《驳议》中。在祖冲之之前,人们使用的历法是天文学家何承天编制的《元嘉历》。祖冲之经过多年的观测和推算,发现《元嘉历》存在很大的差误。于是祖冲之着手制定新的历法,宋孝武帝大明六年(公元462年)他编制成了《大明历》。大明历在祖冲之生前始终没能采用,直到梁武帝天监九年(公元510年)才正式颁布施行。《大明历》的主要成就如下:祖冲之还曾设计制造过许多精巧的机械,在文献《南齐书·祖冲之传》和《南史·祖冲之传》中有所记载。他曾经设计制造过利用水力舂米(英语:Rice pounder)、磨面的水碓磨;重新铸造了当时已经失传了的指南车,随便车子怎样转弯,车上的铜人总是指着南方;制造了"千里船",在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还设计制造过计时仪器漏壶和欹器。《隋书·经籍志》录有《长水校尉祖冲之集》五十一卷,但现已佚。散见于各种史籍记载的还有以下著作:为纪念祖冲之:此外还有祖冲之邮票,祖冲之纪念银币等纪念品。

相关

  • 创伤受伤或创伤,是生理创伤、损害,身体受外物力量侵害,身体功能丧失、流血、断裂、骨折等。在工作时的受伤,称为工伤;在运动时受伤,称为运动创伤,学科名为运动创伤学、运动医学,总称创伤
  • 奥托二世奥托二世(Otto II,955年—983年12月7日),东法兰克国王(961年—983年在位),罗马帝国皇帝(967年起与父亲共治)。皇帝奥托一世与伦巴第的阿德莱德之子。奥托二世在961年父皇尚在世时即已
  • 极度危险物质列表《美国应急规划与社区知情权法》中第302节规定了极度危险物质列表(42 U.S.C. 11002)。这个列表可以在40 C.F.R 355的附录中找到。截止至2006年的更新可以在2006年8月16日的《
  • 句子句子或称语句,指构成语言的基本单位,句子带有语调,大部分语言的句子带有限定动词,按照一定的语法规则组织,具有完整的意义。按照语言的语法规则,每个句子至少包含主语、谓语和宾语
  • 氨甲蝶呤氨甲蝶呤(英语:Methotrexate,又称甲氨喋呤、甲氨蝶呤、氨甲喋呤),在台湾商品名为灭杀除癌锭。氨甲蝶呤是一种化疗药物和免疫抑制剂,被用来治疗癌症、自体免疫疾病、子宫外孕和进行
  • 弹药弹药(Ammunition或Ammo)一般泛指在战争中使用可以发射的各种物品,狭义的弹药包含火炮与枪械使用的炮弹和子弹。广义上还包括各类炸弹,导弹,地雷以及水雷等。弹药的基本结构包含产
  • 福建中医药大学福建中医药大学是位于福建省福州市的一所高等中医药院校。目前,福建中医药大学拥有旗山校区和屏山校区两个校区。其中,旗山校区位于福州市闽侯上街镇华佗路1号,为福建中医药大
  • 玻色-爱因斯坦凝聚态玻色–爱因斯坦凝聚(Bose–Einstein condensate)是玻色子原子在冷却到接近绝对零度所呈现出的一种气态的、超流性的物质状态(物态)。1995年,麻省理工学院的沃夫冈·凯特利与科罗
  • FtsZFtsZ是一种由细菌ftsZ基因编码的蛋白质,组装在接下来会发生细胞分裂,形成隔板的Z-环上,同时该蛋白也是真核生物微管蛋白在原核生物中的同源物。FtsZ以“长丝的温度敏感突变体Z
  • 表面径流地表径流是指雨水或是冰雪融化后的水流经地表产生的水流。表面径流可能是因为土壤已经吸饱水,无法再吸收水分,或者是一些不透水的表面(例如屋顶或是路面(英语:Road surface))使水流