拉普拉斯-贝尔特拉米算子

✍ dations ◷ 2025-09-12 03:54:50 #微分算子,黎曼几何

在微分几何中,拉普拉斯算子可以推广为定义在曲面,或更一般地黎曼流形与伪黎曼流形上,函数的算子。这个更一般的算子叫做拉普拉斯-贝尔特拉米算子(Laplace–Beltrami operator)。与拉普拉斯算子一样,拉普拉斯–贝尔特拉米算子定义为梯度的散度。这个算子作为共变导数的散度,可以延拓到张量上的算子。或者,利用散度与外导数,这个算子可以推广到微分形式上的算子,所得的算子称为拉普拉斯-德拉姆算子(Laplace–de Rham operator)。

就像拉普拉斯算子一样,定义拉普拉斯-贝尔特拉米算子为梯度的散度。为了写出这个算子的一个公式,首先需写出流形上的散度与梯度。

g {\displaystyle g} 的散度可以定义为

这里 L X {\displaystyle L_{X}} 的李导数。在局部坐标中,我们得到

这里(下面同样如此)使用了爱因斯坦求和约定,所以上式其实是一个关于 的和式。一个数量函数 的梯度利用流形上内积 , {\displaystyle \langle \cdot ,\cdot \rangle } 点的切空间中所有向量 v x {\displaystyle v_{x}} 是函数 的外导数;它是变量 v x {\displaystyle v_{x}} 的拉普拉斯–贝尔特拉米算子在局部坐标中公式为

这里 g i j {\displaystyle g^{ij}} 与 -div 伴随:

这里最后一个等式利用了斯托克斯定理。另外注意拉普拉斯–贝尔特拉米算子是负的且对称:

对函数 与 。因此,许多作者定义拉普拉斯–贝尔特拉米算子时添一个减号,将其变成正的。

拉普拉斯–贝尔特拉米算子也可利用与列维-奇维塔联络相伴的迭代共变导数的迹写出来。从这个观点来看,设 i 是切向量场的一个基(不必由坐标系诱导)。则一个函数 的黑塞矩阵是一个 2-张量,分量由

给出。容易看出有张量性变换,因为对每个变量 ij 都是线性的。则拉普拉斯–贝尔特拉米算子是黑塞矩阵关于度量的迹:

在抽象指标记号中,此算子经常写成

需要理解清楚的是这个迹其实就是黑塞张量的迹。

更一般地,我们可以在微分流形的外代数上定义一个拉普拉斯微分算子。在黎曼流形上它是一个椭圆型算子,而在洛伦兹流形上是双曲型的。拉普拉斯–德拉姆算子定义为

这里 d 是外导数而 δ 是余微分。当作用在数量函数上,余微分可以定义为 δ = − {\displaystyle *} -形式的阶数有关的一个符号。

可以证明拉普拉斯–德拉姆算子作用在数量函数 上时与前面的拉普拉斯–贝尔特拉米算子定义相同;细节参见证明。注意拉普拉斯–德拉姆算子事实上是负拉普拉斯–贝尔特拉米算子;这个符号来自定义余微分的习惯。不幸的是,两者都用 Δ 表示,经常成为混乱之源。

给定数量函数 与 ,以及一个实数 ,拉普拉斯–德拉姆算子有如下性质:

利用与列维-奇维塔联络相伴的共变导数,拉普拉斯–贝尔特拉米算子可推广到伪黎曼流形上任意张量。这个推广的算子可以作用在反对称张量上。但所得的算子与拉普拉斯–德拉姆算子给出的不同:两者通过外森比克恒等式相关。

拉普拉斯–贝尔特拉米算子许多特例可以明白地写出来。

球面拉普拉斯算子是带截面曲率为 1 的典范度量 -1 维球面上的拉普拉斯–贝尔特拉米算子。通常将其视为等距嵌入 R 中,作为以原点为中心的单位球面。则对 S n 1 {\displaystyle S^{n-1}} (/||) 是函数 次数为零的齐次延拓到 R,而 Δ 是周围欧几里得空间的拉普拉斯算子。具体地,这由欧几里得拉普拉斯算子在球极坐标下熟知的公式所蕴含:

更一般地,利用法丛可进行类似的技巧,定义任何黎曼流形作为等距嵌入欧几里得空间中的超平面上的拉普拉斯–贝尔特拉米算子。

我们也可以给出球面上拉普拉斯–贝尔特拉米算子在法坐标系中一个内蕴描述。设 (,) 是球面上关于球面上特定点 (北极)的球坐标,这就是关于 的测地极坐标。这里 表示从 出发沿着单位速度测地线的纬度, 是表示 S n 1 {\displaystyle S^{n-1}} - 1 球面上的拉普拉斯算子。

相关

  • 乔治·波特乔治·波特,陆登汉姆的波特男爵,OM,FRS(英语:George Porter, Baron Porter of Luddenham,1920年12月6日-2002年8月31日),英国化学家,1967年获诺贝尔化学奖。1901年:范托夫 | 1902年:费歇
  • 贿赂贿赂、受贿罪是指个人利用职务上的便利,索取他人财物,或者非法收受他人财物,为他人谋取利益的行为。而这些利益并不能从正常的合法途径中得到。此为贪污犯罪之一。商业贿赂是指
  • 锥体在几何学中,棱锥又称角锥,是三维多面体的一种,由多边形各个顶点向它所在的平面外一点依次连直线段而构成。多边形称为棱锥的底面。随着底面形状不同,棱锥的称呼也不相同,依底面多
  • 金熊奖金熊奖(德语:Goldener Bär)是柏林电影节每年颁发的最大奖,被认为是电影界最高荣誉之一,由该届评审团从正式竞赛单元中评选而出。金熊奖自1951年开始颁发,一开始是由德国籍评审团
  • 直布罗陀足球协会直布罗陀足球协会是专门管辖直布罗陀足球事务的组织。直布罗陀足球协会于2013年5月24日加入欧洲足联。并于2016年5月14日,获准加入国际足联。
  • 恩斯特·刘别谦恩斯特·刘别谦(Ernst Lubitsch,1892年1月28日-1947年11月30日)是一位德国电影导演,被广泛的认为是德国电影史上影响最大的导演之一,对于喜剧电影的影响甚大。刘别谦独特的电影风
  • 向智向智长老(巴利语:Nyanaponika Thera,1901年7月21日-1994年10月19日,又译向智上座),又称向智大长老(Nyanaponika Mahathera,又译向智尊者),俗名西格蒙德·芬尼格(德语:Siegmund Feniger),生
  • 黄信尧金马奖最佳新导演 2017年《大佛普拉斯》黄信尧(1973年-),台湾纪录片导演,居住于台南市七股区,国立台南艺术大学音像纪录研究所创作硕士。黄信尧曾任台北市纪录片从业人员职业工会
  • 安德烈·弗朗坎安德烈·弗朗坎(法语:André Franquin,1924年1月3日-1997年1月5日)是一个著名的比利时漫画艺术家。最著名的卡通形象是捣蛋鬼加斯顿、斯皮鲁与芬塔索和马苏皮拉米。
  • 滨口秀树滨口秀树(日语:浜口 秀樹/はまぐち ひでき ,1956年1月4日-),日本男子篮球运动员,曾就读于拓殖大学。他曾代表日本参加1976年夏季奥运会男子篮球比赛,他是1976年日本奥运篮球队中最年