首页 >
有序对
✍ dations ◷ 2025-11-17 13:16:26 #有序对
在数学中,有序对是两个对象的搜集,使得可以区分出其中一个是“第一个元素”而另一个是“第二个元素”(第一个元素和第二个元素也叫做左投影和右投影)。带有第一个元素a和第二个元素b的有序对通常写为(a, b)。符号(a, b)也表示在实数轴上的开区间;在有歧义的场合可使用符号
⟨
a
,
b
⟩
{displaystyle langle a,brangle }
。设(a1, b1)和(a2, b2)是两个有序对。则有序对的特征或定义性质为:有序对可以有其他有序对作为投影。所以有序对使得能够递归定义有序n-元组(n项的列表)。例如,有序三元组 (a,b,c)可以定义为(a, (b,c)),一个对嵌入了另一个对。这种方法也反映在计算机编程语言中,就是从嵌套的有序对构造元素的列表。例如,列表 (1 2 3 4 5)变成了(1, (2, (3, (4, (5, {} )))))。Lisp编程语言使用这种列表作为基本数据结构。有序对的概念对于定义笛卡尔积和关系是至关重要的。诺伯特·维纳在1914年提议了有序对的第一个集合论定义:他注意到这个定义将允许《数学原理》中所有类型只透过集合便能表达。(在《数学原理》中,所有元数的关系都是原始概念。)在公理化集合论中,有序对(a,b)通常定义为库拉托夫斯基对:陈述“x是有序对p的第一个元素”可以公式化为而陈述“x是p的第二个元素”为注意这个定义对于有序对p = (x,x) = { {x}, {x,x} } = { {x}, {x} } = { {x} }仍是有效的;在这种情况下陈述(∀ Y1 ∈ p, ∀ Y2 ∈ p : Y1 ≠ Y2 → (x ∉ Y1 ∨ x ∉ Y2))显然是真的,因为不会有Y1 ≠ Y2的情况。上述有序对的定义是“充足”的,在它满足有序对必须有的特征性质(也就是:如果(a,b)=(x,y)则a=x且b=y)的意义上,但也是任意性的,因为有很多其他定义也是不更加复杂并且也是充足的。例如下列可能的定义“逆”(reverse)对基本不使用,因为它比通用的Kuratowski对没有明显的优点(或缺点)。“短”(short)对有一个缺点,它的特征性质的证明会比Kuratowski对的证明更加复杂(要使用正规公理);此外,因为在集合论中数2有时定义为集合{ 0, 1 } = { {}, {0} },这将意味着2是对 (0,0)short。Kuratowski对:
证明:(a,b)K = (c,d)K当且仅当a=c且b=d。仅当:当:逆对:
(a,b)reverse = {{b},{a,b}} = {{b},{b,a}} = (b,a)K。Rosser(1953年)扩展了蒯因的有序对定义。Quine-Rosser的定义要求自然数的先决定义。设
N
{displaystyle mathbb {N} }
是自然数的集合,
x
∖
N
{displaystyle xsetminus mathbb {N} }
是
N
{displaystyle mathbb {N} }
在
x
{displaystyle x}
内的相对差集,并定义:φ(x)包含在x中所有自然数的后继,和x中的所有非数成员。特别是,φ(x)不包含数0,所以对于任何集合A和B,
ϕ
(
A
)
≠
{
0
}
∪
ϕ
(
B
)
{displaystyle phi (A)not ={0}cup phi (B)}
。以下是有序对 (A,B)的定义:提取这个对中那些不包含0的所有元素,然后再还原
φ
{displaystyle varphi }
的作用,就得出了A。类似的,B可以通过提取这个对的包含0的所有元素来复原。有序对的这个定义有个显著的优点。在类型论和从类型论派生出的集合论如新基础中,这个对与它的投影有相同的类型(所以术语叫做“类型齐平”有序对)。因此一个函数(定义为有序对的集合),有只比序对的投影的类型高1的类型。对蒯因集合论中有序对的广泛的讨论请参见Holmes (1998)。Morse(1965年)提出的Morse-Kelley集合论可以自由的使用真类。Morse定义有序对的方法,使得它的投影可以是真类或者集合。(Kuratowski定义不允许这样)。它首先像Kuratowski的方式那样,定义投影为集合的有序对。接着,他重定义对 (x,y)为这里的笛卡尔积是指由Kuratowski对组成的集合并且这便允许了定义以真类为投影的有序对。
相关
- 动物界è§å†…文动物是多细èƒçœŸæ ¸ç”Ÿå‘½ä½“ä¸çš„一大类群,统称为动物界ã
- 泌尿生殖系统泌尿生殖系统(urogenital system)或生殖泌尿系统(genitourinary system)是生殖器官和泌尿系统所在的生物系统。这两个系统并在一起的原因是因为它们彼此相邻,非常接近。此外,这两
- 三尖瓣三尖瓣,又称右房室瓣,是在哺乳动物心脏的右后侧,在右心房和右心室之间的瓣膜。其作用是阻止血液回流至右心房。
- 麦角固醇麦角固醇(英语:Ergosterol,又称为麦角甾醇)是从真菌类酵母与麦角菌中发现的一种植物固醇。在紫外线照射下可被转化为维生素D2。它是酵母和真菌细胞膜的组成部分,功能与动物细胞膜
- 自然资源自然资源,亦称天然资源,是指在其原始状态下就有价值的物产。一般来说假如获取这个物产的主要工程是收集和纯化,而不是生产的话,那么这个物产是一种自然资源。采矿、采油、渔业和
- 索马里面积以下资讯是以2019年估计国家领袖国内生产总值(购买力平价) 以下资讯是以2010估计国内生产总值(国际汇率) 以下资讯是以2007年估计人类发展指数 以下资讯是以]]估计索马里联
- 多毛症先天性遗传多毛症(hypertrichosis)是一种返祖现象,患者一般在出生后不久全身就长满了乌黑而坚硬的毛,有如传说故事中的狼人,因此又称狼人综合症,但身体其他状况与常人无异,智力发育
- 华盛顿州华盛顿州(英语:State of Washington),简称华州,是一个位于美国西北太平洋沿岸的州,北接加拿大不列颠哥伦比亚省,南接俄勒冈州,东临爱达荷州,西邻太平洋。为纪念美国首任总统,乔治·华
- 谷氨酸谷氨酸(英语:Glutamic acid)是α-氨基戊二酸是组成生物体内各种蛋白质的20种氨基酸之一。
- 模型在数学学科模型论中,语言 L {\displaystyle {\mathcal {L}}} 的结构
