首页 >
有序对
✍ dations ◷ 2025-06-27 18:33:59 #有序对
在数学中,有序对是两个对象的搜集,使得可以区分出其中一个是“第一个元素”而另一个是“第二个元素”(第一个元素和第二个元素也叫做左投影和右投影)。带有第一个元素a和第二个元素b的有序对通常写为(a, b)。符号(a, b)也表示在实数轴上的开区间;在有歧义的场合可使用符号
⟨
a
,
b
⟩
{displaystyle langle a,brangle }
。设(a1, b1)和(a2, b2)是两个有序对。则有序对的特征或定义性质为:有序对可以有其他有序对作为投影。所以有序对使得能够递归定义有序n-元组(n项的列表)。例如,有序三元组 (a,b,c)可以定义为(a, (b,c)),一个对嵌入了另一个对。这种方法也反映在计算机编程语言中,就是从嵌套的有序对构造元素的列表。例如,列表 (1 2 3 4 5)变成了(1, (2, (3, (4, (5, {} )))))。Lisp编程语言使用这种列表作为基本数据结构。有序对的概念对于定义笛卡尔积和关系是至关重要的。诺伯特·维纳在1914年提议了有序对的第一个集合论定义:他注意到这个定义将允许《数学原理》中所有类型只透过集合便能表达。(在《数学原理》中,所有元数的关系都是原始概念。)在公理化集合论中,有序对(a,b)通常定义为库拉托夫斯基对:陈述“x是有序对p的第一个元素”可以公式化为而陈述“x是p的第二个元素”为注意这个定义对于有序对p = (x,x) = { {x}, {x,x} } = { {x}, {x} } = { {x} }仍是有效的;在这种情况下陈述(∀ Y1 ∈ p, ∀ Y2 ∈ p : Y1 ≠ Y2 → (x ∉ Y1 ∨ x ∉ Y2))显然是真的,因为不会有Y1 ≠ Y2的情况。上述有序对的定义是“充足”的,在它满足有序对必须有的特征性质(也就是:如果(a,b)=(x,y)则a=x且b=y)的意义上,但也是任意性的,因为有很多其他定义也是不更加复杂并且也是充足的。例如下列可能的定义“逆”(reverse)对基本不使用,因为它比通用的Kuratowski对没有明显的优点(或缺点)。“短”(short)对有一个缺点,它的特征性质的证明会比Kuratowski对的证明更加复杂(要使用正规公理);此外,因为在集合论中数2有时定义为集合{ 0, 1 } = { {}, {0} },这将意味着2是对 (0,0)short。Kuratowski对:
证明:(a,b)K = (c,d)K当且仅当a=c且b=d。仅当:当:逆对:
(a,b)reverse = {{b},{a,b}} = {{b},{b,a}} = (b,a)K。Rosser(1953年)扩展了蒯因的有序对定义。Quine-Rosser的定义要求自然数的先决定义。设
N
{displaystyle mathbb {N} }
是自然数的集合,
x
∖
N
{displaystyle xsetminus mathbb {N} }
是
N
{displaystyle mathbb {N} }
在
x
{displaystyle x}
内的相对差集,并定义:φ(x)包含在x中所有自然数的后继,和x中的所有非数成员。特别是,φ(x)不包含数0,所以对于任何集合A和B,
ϕ
(
A
)
≠
{
0
}
∪
ϕ
(
B
)
{displaystyle phi (A)not ={0}cup phi (B)}
。以下是有序对 (A,B)的定义:提取这个对中那些不包含0的所有元素,然后再还原
φ
{displaystyle varphi }
的作用,就得出了A。类似的,B可以通过提取这个对的包含0的所有元素来复原。有序对的这个定义有个显著的优点。在类型论和从类型论派生出的集合论如新基础中,这个对与它的投影有相同的类型(所以术语叫做“类型齐平”有序对)。因此一个函数(定义为有序对的集合),有只比序对的投影的类型高1的类型。对蒯因集合论中有序对的广泛的讨论请参见Holmes (1998)。Morse(1965年)提出的Morse-Kelley集合论可以自由的使用真类。Morse定义有序对的方法,使得它的投影可以是真类或者集合。(Kuratowski定义不允许这样)。它首先像Kuratowski的方式那样,定义投影为集合的有序对。接着,他重定义对 (x,y)为这里的笛卡尔积是指由Kuratowski对组成的集合并且这便允许了定义以真类为投影的有序对。
相关
- 哥伦布克里斯托弗·哥伦布(西班牙语:Cristóbal Colón;意大利语:Cristoforo Colombo),(1451年-1506年5月20日)探险家、殖民者、航海家,出生于中世纪的热那亚共和国(今意大利西北部)。在西班
- 分裂分裂可以是:
- 心室颤动心室颤动(Ventricular fibrillation),简称V-fib或Vf,中文简称为室颤,是指心脏因为心室的心脏电传导系统问题,造成心脏无效颤动,无法输送血液的情形,是心律不整的一种。心室颤动会造
- 生物膜法生物膜法是一种处理污水的好氧生物方法,是一大类生物处理方法的统称。共同的特点是微生物附着在作为介质的滤料表面,生长成为一层由微生物构成的膜。污水与之接触后,其中的溶解
- C05AAA·B·C·D·G·H·QI·J·L·M·N·P·R·S·VATC代码C05(血管保护药)是解剖学治疗学及化学分类系统的一个药物分组,这是由世界卫生组织药物统计方法整合中心(The WHO Collabor
- 喜帕恰斯喜帕恰斯(ίππαρχος,Hipparkhos,约前190年-前120年),或译希帕求斯、伊巴谷、依巴谷,古希腊的天文学家,有“方位天文学之父”之称。公元前134年,他绘制出包含1025颗恒星的星图,
- 丹尼尔·格拉次曼丹尼尔·格拉次曼(英语:Daniel Glazman,1967年-)是一名程序员,以开发Mozilla的Editor组件、Mozilla Composer组件以及基于Composer的独立软件Nvu而闻名,Nvu是由Linspire公司赞助。
- 红髓红髓,亦作红脾髓,是脾脏的一部分,与白脾髓一起构成脾脏的主要部分。红脾髓的主要功能是过滤和储存血液,由脾索及血窦组成,但因为其不含输入淋巴管,所以脾脏不能过滤淋巴的功能。“
- 喉返神经喉返神经(Recurrent Laryngeal Nerve)是人体第十对脑神经中,迷走神经(Vagus Nerve)的分支,脑神经出现在所有的脊椎动物上,因此在其他种类的脊椎动物身上也具有喉返神经。控制喉部(la
- 施氏食狮史《施氏食狮史》是一篇由中国语言学家赵元任所写的同音文章,全文共92字(连标题97字),每字之普通话拼音都为shi(注音符号为ㄕ),只是声调相异。石室诗士施氏,嗜狮,誓食十狮。这篇文言文