有序对

✍ dations ◷ 2025-11-28 23:33:02 #有序对
在数学中,有序对是两个对象的搜集,使得可以区分出其中一个是“第一个元素”而另一个是“第二个元素”(第一个元素和第二个元素也叫做左投影和右投影)。带有第一个元素a和第二个元素b的有序对通常写为(a, b)。符号(a, b)也表示在实数轴上的开区间;在有歧义的场合可使用符号 ⟨ a , b ⟩ {displaystyle langle a,brangle } 。设(a1, b1)和(a2, b2)是两个有序对。则有序对的特征或定义性质为:有序对可以有其他有序对作为投影。所以有序对使得能够递归定义有序n-元组(n项的列表)。例如,有序三元组 (a,b,c)可以定义为(a, (b,c)),一个对嵌入了另一个对。这种方法也反映在计算机编程语言中,就是从嵌套的有序对构造元素的列表。例如,列表 (1 2 3 4 5)变成了(1, (2, (3, (4, (5, {} )))))。Lisp编程语言使用这种列表作为基本数据结构。有序对的概念对于定义笛卡尔积和关系是至关重要的。诺伯特·维纳在1914年提议了有序对的第一个集合论定义:他注意到这个定义将允许《数学原理》中所有类型只透过集合便能表达。(在《数学原理》中,所有元数的关系都是原始概念。)在公理化集合论中,有序对(a,b)通常定义为库拉托夫斯基对:陈述“x是有序对p的第一个元素”可以公式化为而陈述“x是p的第二个元素”为注意这个定义对于有序对p = (x,x) = { {x}, {x,x} } = { {x}, {x} } = { {x} }仍是有效的;在这种情况下陈述(∀ Y1 ∈ p, ∀ Y2 ∈ p : Y1 ≠ Y2 → (x ∉ Y1 ∨ x ∉ Y2))显然是真的,因为不会有Y1 ≠ Y2的情况。上述有序对的定义是“充足”的,在它满足有序对必须有的特征性质(也就是:如果(a,b)=(x,y)则a=x且b=y)的意义上,但也是任意性的,因为有很多其他定义也是不更加复杂并且也是充足的。例如下列可能的定义“逆”(reverse)对基本不使用,因为它比通用的Kuratowski对没有明显的优点(或缺点)。“短”(short)对有一个缺点,它的特征性质的证明会比Kuratowski对的证明更加复杂(要使用正规公理);此外,因为在集合论中数2有时定义为集合{ 0, 1 } = { {}, {0} },这将意味着2是对 (0,0)short。Kuratowski对: 证明:(a,b)K = (c,d)K当且仅当a=c且b=d。仅当:当:逆对: (a,b)reverse = {{b},{a,b}} = {{b},{b,a}} = (b,a)K。Rosser(1953年)扩展了蒯因的有序对定义。Quine-Rosser的定义要求自然数的先决定义。设 N {displaystyle mathbb {N} } 是自然数的集合, x ∖ N {displaystyle xsetminus mathbb {N} } 是 N {displaystyle mathbb {N} } 在 x {displaystyle x} 内的相对差集,并定义:φ(x)包含在x中所有自然数的后继,和x中的所有非数成员。特别是,φ(x)不包含数0,所以对于任何集合A和B, ϕ ( A ) ≠ { 0 } ∪ ϕ ( B ) {displaystyle phi (A)not ={0}cup phi (B)} 。以下是有序对 (A,B)的定义:提取这个对中那些不包含0的所有元素,然后再还原 φ {displaystyle varphi } 的作用,就得出了A。类似的,B可以通过提取这个对的包含0的所有元素来复原。有序对的这个定义有个显著的优点。在类型论和从类型论派生出的集合论如新基础中,这个对与它的投影有相同的类型(所以术语叫做“类型齐平”有序对)。因此一个函数(定义为有序对的集合),有只比序对的投影的类型高1的类型。对蒯因集合论中有序对的广泛的讨论请参见Holmes (1998)。Morse(1965年)提出的Morse-Kelley集合论可以自由的使用真类。Morse定义有序对的方法,使得它的投影可以是真类或者集合。(Kuratowski定义不允许这样)。它首先像Kuratowski的方式那样,定义投影为集合的有序对。接着,他重定义对 (x,y)为这里的笛卡尔积是指由Kuratowski对组成的集合并且这便允许了定义以真类为投影的有序对。

相关

  • 尸冷尸冷(Algor mortis)是指恒温动物死亡后,新陈代谢和产热停止,由于自然散热体温下降的现象。尸冷的温度下限是环境温度,但后来腐烂过程开始后,尸体温度可能又会上升。成年人类死亡后
  • 海藻糖海藻糖(Trehalose)是自然界的动植物和微生物中广泛存在的一种双糖,它是由2个葡萄糖通过 α,α-1,1-糖苷键所形成的非还原性糖,按其化学结构可写成 α-D-吡喃葡萄糖基-(1→1)-α-
  • 生物性危害第四级生物性危害(英文:Biological hazard, Biohazard),又称为“生物危害”,指的是会对人类及动物有危害的生物或生物性物质。这些物质包括但不限于动物、植物、微生物、病毒及含有病原
  • 拉丁美洲拉丁美洲,简称拉美,是美洲的一部分,狭义上包括了以拉丁语族(也称罗曼语族,主要是西班牙语、葡萄牙语和法语)语言为官方语言的美洲国家和地区;广义上包括了美国以南的全部美洲国家与
  • 开罗开罗(阿拉伯语:القـــاهــرة‎,转写:al-Qāhira)是埃及首都。开罗在古埃及时期称优努(古埃及语:ỉwnw,拉丁化:lunu,意为“通道”)或安努(Anu),圣经中称作安(On)、赫利奥波利斯(希
  • NLA澳大利亚国立图书馆(National Library of Australia),是澳大利亚最大的参考(非借阅)图书馆,创立于1960年。图书馆的馆址位于澳大利亚首都领地堪培拉。根据澳大利亚联邦《国立图书
  • 治疗治疗(英语:Therapy),指用于解决健康问题的手段,通常在医学诊断后实施。
  • 孢子丝菌症孢子丝菌病是一种因为受到申克氏孢子丝菌(Sporothrix schenckii)感染,引起皮肤产生病变,也可能发生在肺、关节、骨骼,甚至脑,但是较为罕见。申克氏胞子丝菌存在于土壤中,干草堆、
  • 特异度灵敏度和特异度(Sensitivity and specificity),是统计学中用来表征二项分类测试特征的数据。灵敏度可以作为避免假阴性的量化指标,而特异度可以作为避免假阳性的量化指标。对于
  • 陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧