有序对

✍ dations ◷ 2025-11-24 05:39:34 #有序对
在数学中,有序对是两个对象的搜集,使得可以区分出其中一个是“第一个元素”而另一个是“第二个元素”(第一个元素和第二个元素也叫做左投影和右投影)。带有第一个元素a和第二个元素b的有序对通常写为(a, b)。符号(a, b)也表示在实数轴上的开区间;在有歧义的场合可使用符号 ⟨ a , b ⟩ {displaystyle langle a,brangle } 。设(a1, b1)和(a2, b2)是两个有序对。则有序对的特征或定义性质为:有序对可以有其他有序对作为投影。所以有序对使得能够递归定义有序n-元组(n项的列表)。例如,有序三元组 (a,b,c)可以定义为(a, (b,c)),一个对嵌入了另一个对。这种方法也反映在计算机编程语言中,就是从嵌套的有序对构造元素的列表。例如,列表 (1 2 3 4 5)变成了(1, (2, (3, (4, (5, {} )))))。Lisp编程语言使用这种列表作为基本数据结构。有序对的概念对于定义笛卡尔积和关系是至关重要的。诺伯特·维纳在1914年提议了有序对的第一个集合论定义:他注意到这个定义将允许《数学原理》中所有类型只透过集合便能表达。(在《数学原理》中,所有元数的关系都是原始概念。)在公理化集合论中,有序对(a,b)通常定义为库拉托夫斯基对:陈述“x是有序对p的第一个元素”可以公式化为而陈述“x是p的第二个元素”为注意这个定义对于有序对p = (x,x) = { {x}, {x,x} } = { {x}, {x} } = { {x} }仍是有效的;在这种情况下陈述(∀ Y1 ∈ p, ∀ Y2 ∈ p : Y1 ≠ Y2 → (x ∉ Y1 ∨ x ∉ Y2))显然是真的,因为不会有Y1 ≠ Y2的情况。上述有序对的定义是“充足”的,在它满足有序对必须有的特征性质(也就是:如果(a,b)=(x,y)则a=x且b=y)的意义上,但也是任意性的,因为有很多其他定义也是不更加复杂并且也是充足的。例如下列可能的定义“逆”(reverse)对基本不使用,因为它比通用的Kuratowski对没有明显的优点(或缺点)。“短”(short)对有一个缺点,它的特征性质的证明会比Kuratowski对的证明更加复杂(要使用正规公理);此外,因为在集合论中数2有时定义为集合{ 0, 1 } = { {}, {0} },这将意味着2是对 (0,0)short。Kuratowski对: 证明:(a,b)K = (c,d)K当且仅当a=c且b=d。仅当:当:逆对: (a,b)reverse = {{b},{a,b}} = {{b},{b,a}} = (b,a)K。Rosser(1953年)扩展了蒯因的有序对定义。Quine-Rosser的定义要求自然数的先决定义。设 N {displaystyle mathbb {N} } 是自然数的集合, x ∖ N {displaystyle xsetminus mathbb {N} } 是 N {displaystyle mathbb {N} } 在 x {displaystyle x} 内的相对差集,并定义:φ(x)包含在x中所有自然数的后继,和x中的所有非数成员。特别是,φ(x)不包含数0,所以对于任何集合A和B, ϕ ( A ) ≠ { 0 } ∪ ϕ ( B ) {displaystyle phi (A)not ={0}cup phi (B)} 。以下是有序对 (A,B)的定义:提取这个对中那些不包含0的所有元素,然后再还原 φ {displaystyle varphi } 的作用,就得出了A。类似的,B可以通过提取这个对的包含0的所有元素来复原。有序对的这个定义有个显著的优点。在类型论和从类型论派生出的集合论如新基础中,这个对与它的投影有相同的类型(所以术语叫做“类型齐平”有序对)。因此一个函数(定义为有序对的集合),有只比序对的投影的类型高1的类型。对蒯因集合论中有序对的广泛的讨论请参见Holmes (1998)。Morse(1965年)提出的Morse-Kelley集合论可以自由的使用真类。Morse定义有序对的方法,使得它的投影可以是真类或者集合。(Kuratowski定义不允许这样)。它首先像Kuratowski的方式那样,定义投影为集合的有序对。接着,他重定义对 (x,y)为这里的笛卡尔积是指由Kuratowski对组成的集合并且这便允许了定义以真类为投影的有序对。

相关

  • 杀虫剂杀虫剂是一种施用对象为昆虫的农药,经常用于农业、医药、工业及居家环境。杀虫剂可针对处于所有发展阶段的昆虫,包括杀卵剂和杀幼虫剂。在公元前2500年之前,人类就开始使用农药
  • 菌根菌根(希腊语:μυκός, mykós, "fungus",和ρίζα, riza, "root",,英语:mycorrhiza,复数形式mycorrhizae或mycorrhizas)指的是维管束植物的根与真菌组成的共生关系体。 它菌
  • 领土变迁美国领土变迁(英语:Territorial evolution of the United States)列出美国领土内外边界的变更,以及地位和名称的变化。领土地图上也包括最终成为美国一部分的周边地区。并附有地
  • praziquantel吡喹酮(英语:Praziquantel,或英语:Biltricide)为一种用于人类及动物的驱虫药,专门治疗绦虫及吸虫。对于血吸虫、中华肝吸虫、广节裂头绦虫(英语:Diphyllobothrium latum)特别有效,吡喹
  • 聚合酶链锁反应聚合酶链式反应(英文:Polymerase chain reaction,缩写:PCR,又称多聚酶链式反应),是一项利用DNA双链复制的原理,在生物体外复制特定DNA片段的核酸合成技术。通过这一技术,可在短时间内
  • 美分美分可以指:
  • Betamethasone倍他米松(Betamethasone)为一固醇类药物,可用于治疗多种风湿免疫性疾病,如类风湿性关节炎、全身性红斑狼疮,以及皮肤炎和银屑病等等免疫性皮肤疾病。其他适应症还包含哮喘及血管
  • 平衡平衡,是指一种稳定的状态,当受到多种对立的各方面,若每一部分都互相抵消,使整体无变化则称为平衡。在经济学上,若支出和收入相等,则达到一个平衡;在化学上,若一可逆反应的正反应与逆
  • 岩可以指:
  • 自雇人士自雇者,或称自雇人士,其工作的雇主就是自己。此类劳务提供者承担商业风险,不受劳动法律所保障,不能享受员工福利、有薪公众假期、工伤赔偿、退休金等,有些则加入行会。自雇者要申