首页 >
有序对
✍ dations ◷ 2025-12-03 05:14:53 #有序对
在数学中,有序对是两个对象的搜集,使得可以区分出其中一个是“第一个元素”而另一个是“第二个元素”(第一个元素和第二个元素也叫做左投影和右投影)。带有第一个元素a和第二个元素b的有序对通常写为(a, b)。符号(a, b)也表示在实数轴上的开区间;在有歧义的场合可使用符号
⟨
a
,
b
⟩
{displaystyle langle a,brangle }
。设(a1, b1)和(a2, b2)是两个有序对。则有序对的特征或定义性质为:有序对可以有其他有序对作为投影。所以有序对使得能够递归定义有序n-元组(n项的列表)。例如,有序三元组 (a,b,c)可以定义为(a, (b,c)),一个对嵌入了另一个对。这种方法也反映在计算机编程语言中,就是从嵌套的有序对构造元素的列表。例如,列表 (1 2 3 4 5)变成了(1, (2, (3, (4, (5, {} )))))。Lisp编程语言使用这种列表作为基本数据结构。有序对的概念对于定义笛卡尔积和关系是至关重要的。诺伯特·维纳在1914年提议了有序对的第一个集合论定义:他注意到这个定义将允许《数学原理》中所有类型只透过集合便能表达。(在《数学原理》中,所有元数的关系都是原始概念。)在公理化集合论中,有序对(a,b)通常定义为库拉托夫斯基对:陈述“x是有序对p的第一个元素”可以公式化为而陈述“x是p的第二个元素”为注意这个定义对于有序对p = (x,x) = { {x}, {x,x} } = { {x}, {x} } = { {x} }仍是有效的;在这种情况下陈述(∀ Y1 ∈ p, ∀ Y2 ∈ p : Y1 ≠ Y2 → (x ∉ Y1 ∨ x ∉ Y2))显然是真的,因为不会有Y1 ≠ Y2的情况。上述有序对的定义是“充足”的,在它满足有序对必须有的特征性质(也就是:如果(a,b)=(x,y)则a=x且b=y)的意义上,但也是任意性的,因为有很多其他定义也是不更加复杂并且也是充足的。例如下列可能的定义“逆”(reverse)对基本不使用,因为它比通用的Kuratowski对没有明显的优点(或缺点)。“短”(short)对有一个缺点,它的特征性质的证明会比Kuratowski对的证明更加复杂(要使用正规公理);此外,因为在集合论中数2有时定义为集合{ 0, 1 } = { {}, {0} },这将意味着2是对 (0,0)short。Kuratowski对:
证明:(a,b)K = (c,d)K当且仅当a=c且b=d。仅当:当:逆对:
(a,b)reverse = {{b},{a,b}} = {{b},{b,a}} = (b,a)K。Rosser(1953年)扩展了蒯因的有序对定义。Quine-Rosser的定义要求自然数的先决定义。设
N
{displaystyle mathbb {N} }
是自然数的集合,
x
∖
N
{displaystyle xsetminus mathbb {N} }
是
N
{displaystyle mathbb {N} }
在
x
{displaystyle x}
内的相对差集,并定义:φ(x)包含在x中所有自然数的后继,和x中的所有非数成员。特别是,φ(x)不包含数0,所以对于任何集合A和B,
ϕ
(
A
)
≠
{
0
}
∪
ϕ
(
B
)
{displaystyle phi (A)not ={0}cup phi (B)}
。以下是有序对 (A,B)的定义:提取这个对中那些不包含0的所有元素,然后再还原
φ
{displaystyle varphi }
的作用,就得出了A。类似的,B可以通过提取这个对的包含0的所有元素来复原。有序对的这个定义有个显著的优点。在类型论和从类型论派生出的集合论如新基础中,这个对与它的投影有相同的类型(所以术语叫做“类型齐平”有序对)。因此一个函数(定义为有序对的集合),有只比序对的投影的类型高1的类型。对蒯因集合论中有序对的广泛的讨论请参见Holmes (1998)。Morse(1965年)提出的Morse-Kelley集合论可以自由的使用真类。Morse定义有序对的方法,使得它的投影可以是真类或者集合。(Kuratowski定义不允许这样)。它首先像Kuratowski的方式那样,定义投影为集合的有序对。接着,他重定义对 (x,y)为这里的笛卡尔积是指由Kuratowski对组成的集合并且这便允许了定义以真类为投影的有序对。
相关
- NARA美国国家档案和记录管理局(英语:National Archives and Records Administration,缩写:NARA)是美国政府独立机构,负责收存所有美国官方历史记录。并负责发布国会法案、总统文告和行
- 选择压力演化压力,或选择压力,可以被认为是外界施与一个生物演化过程的压力,从而改变该过程的前进方向。所谓达尔文的自然选择,或者物竞天择,适者生存,即是说,自然界施与生物体选择压力从而
- 核安全核安全包括为了防止核辐射事故以及限制发生事故以后的后果的措施。需要采取核安全措施的设施包括核能发电厂和其它的核设施、以及医用、发电用、工业用和军用的核物质的运输
- 奥硝唑奥硝唑(Ornidazole),化学名:1-(3-氯-2-羟丙基)-2-甲基-5-硝基咪唑,是一种5-硝基咪唑类抗生素,用于治疗厌氧菌和原虫、滴虫感染。左奥硝唑是奥硝唑的左旋体((S)-(−)-),用于滴虫、阿米
- 吕根岛吕根岛(德语:Rügen;拉丁语:Rugia)是德国最大的岛屿,位于德国东北部的波罗的海,属于梅克伦堡-前波美拉尼亚州。吕根岛南北最长处为52千米,东西最宽处为41千米,总面积926平方千米,海岸
- 孝感市孝感市,古称孝昌,是中华人民共和国湖北省下辖的地级市,位于湖北省东北部。市境东北接黄冈市,东临武汉市,南抵仙桃市,西南界天门市,西邻荆门市,西北达随州市,北靠河南省信阳市。地处江
- 泛神论泛神论(英语:Pantheism)是一种将大自然与神等同起来,以强调大自然的至高无上的哲学观点。认为神就存在于自然界一切事物之中,并没有另外的超自然的主宰或精神力量。这种观点自十
- 达芬奇列奥纳多·达·芬奇(意大利语:Leonardo da Vinci;儒略历1452年4月15日-1519年5月2日),又译达文西,全名列奥纳多·迪·瑟皮耶罗·达·芬奇(Leonardo di ser Piero da Vinci,意为“芬奇
- 黑颈天鹅黑颈天鹅(学名:Cygnus melancoryphus)是小型鸭科天鹅属鸟类,主要分布于南美洲南回归线以南的地区,是南美洲体型最大的原生雁鸭类。体长1至1.4米,体重3.5-6.7公斤;雄性身型较雌性大
- 猿猿是灵长目人猿总科(学名:Hominoidea)动物的通称,包括两个科。虽然人们常把猿猴并称,有时候将猴也称为猿,而猿有时也会称做是猴,不过他们在生物学上是不同的动物。两者的主要区别在
