克莱姆法则

✍ dations ◷ 2025-10-18 17:32:33 #线性代数,代数定理,矩阵分解,行列式计算

向量 · 向量空间  · 行列式  · 矩阵

标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积

矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·

线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 ·

克莱姆法则(英语:Cramer's rule),又称为克拉玛公式、克拉默法则,是一个线性代数中的定理,用行列式来计算出线性等式组中的所有解。这个定理因加百列·克莱姆(1704年 - 1752年)的卓越使用而命名。在计算上,并非最有效率之法,因而在很多条等式的情况中没有广泛应用。不过,这一定理在理论性方面十分有效。

一个线性方程组可以用矩阵与向量的方程来表示:

其中的 A {\displaystyle A} 列的列向量后得到的矩阵。为了方便,我们通常使用 Δ {\displaystyle \Delta } 的系数的 n × n {\displaystyle n\times n} 的行列式,以及 I {\displaystyle I} 就是单位矩阵。

对于 n {\displaystyle n} 元线性方程组 A x = c {\displaystyle Ax=c}

把系数矩阵 A {\displaystyle {\begin{smallmatrix}A\end{smallmatrix}}} 表示成列向量的形式

A = ( u 1 , u 2 , , u n ) {\displaystyle A=\left(u_{1},u_{2},\cdots ,u_{n}\right)}

由于系数矩阵可逆,故方程组一定有解 x = A 1 c {\displaystyle x^{*}=A^{-1}c} .

x = ( x 1 , x 2 , , x n ) T {\displaystyle x^{*}=(x_{1},x_{2},\cdots ,x_{n})^{T}} ,即

A x = k = 1 n x k u k = c {\displaystyle Ax^{*}=\sum _{k=1}^{n}x_{k}u_{k}=c}

考虑 Δ i {\displaystyle \Delta _{i}} 的值,利用行列式的线性和交替性质,有

Δ i = d e t ( , u i 1 , c , u i + 1 , ) = d e t ( , u i 1 , k = 1 n x k u k , u i + 1 , ) = k = 1 n x k d e t ( , u i 1 , u k , u i + 1 , ) = x i d e t ( , u i 1 , u i , u i + 1 , ) = x i Δ {\displaystyle {\begin{aligned}\Delta _{i}&=det\left(\cdots ,u_{i-1},c,u_{i+1},\cdots \right)\\&=det\left(\cdots ,u_{i-1},\sum _{k=1}^{n}x_{k}u_{k},u_{i+1},\cdots \right)\\&=\sum _{k=1}^{n}x_{k}\cdot det\left(\cdots ,u_{i-1},u_{k},u_{i+1},\cdots \right)\\&=x_{i}\cdot det\left(\cdots ,u_{i-1},u_{i},u_{i+1},\cdots \right)\\&=x_{i}\Delta \end{aligned}}}

于是

x i = Δ i Δ {\displaystyle x_{i}={\frac {\Delta _{i}}{\Delta }}}

运用克莱姆法则可以很有效地解决以下方程组。

已知:

使用矩阵来表示时就是:

当矩阵可逆时,x和y可以从克莱姆法则中得出:

用3×3矩阵的情况亦差不多。

已知:

当中的矩阵表示为:

当矩阵可逆时,可以求出x、y和z:

克莱姆法则在解决微分几何的问题时十分有用。

先考虑两条等式 F ( x , y , u , v ) = 0 {\displaystyle F(x,y,u,v)=0\,} G ( x , y , u , v ) = 0 {\displaystyle G(x,y,u,v)=0\,} 。其中的u和v是需要考虑的变量,并且它们互不相关。我们可定义 x = X ( u , v ) {\displaystyle x=X(u,v)\,} y = Y ( u , v ) {\displaystyle y=Y(u,v)\,}

找出一条等式适合 x / u {\displaystyle \partial x/\partial u} 是克莱姆法则的简单应用。

首先,我们要计算 F {\displaystyle F} G {\displaystyle G} x {\displaystyle x} y {\displaystyle y} 的导数:

d x {\displaystyle dx} d y {\displaystyle dy} 代入 d F {\displaystyle dF} d G {\displaystyle dG} ,可得出:

因为 u {\displaystyle u} v {\displaystyle v} 互不相关,所以 d u {\displaystyle du} d v {\displaystyle dv} 的系数都要等于0。所以等式中的系数可以被写成:

现在用克莱姆法则就可得到:

用两个雅可比矩阵来表示的方程:

用类似的方法就可以找到 x v {\displaystyle {\frac {\partial x}{\partial v}}} y u {\displaystyle {\frac {\partial y}{\partial u}}} 以及 y v {\displaystyle {\frac {\partial y}{\partial v}}}

克莱姆法则可以用来证明一些线性代数中的定理,当中的定理对环理论十分有用。

克莱姆法则可以用来证明一个线性规划问题有一个基本整数的解。这样使得线性规划的问题更容易被解决。

相关

  • 产科学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学产科学是一门研究女性妊娠期、分娩期
  • 三苯基氧化膦三苯基氧化膦(英文:Triphenylphosphine oxide),或称三苯基氧膦、氧化三苯基膦,是化学式为OP(C6H5)3的有机磷化合物。分子式常简写为Ph3PO或PPh3O,Ph代表C6H5。室温下为白色晶体,是
  • 皇四女穆库什(1595年-17世纪?),清太祖努尔哈赤第四女,生母为庶妃嘉穆瑚觉罗氏,与巴布泰和巴布海同母。明万历二十三年出生。明万历三十六年 (1608年) ,穆库什格格嫁给了乌拉国主布占泰。及
  • 神经发展障碍神经发育障碍或神经发展障碍(Neurodevelopmental disorder)是精神疾患中的一种。此用词有几种不同的定义,其中一种范围较窄的定义是指有关脑部,会影响情绪、一般学习能力、自我
  • 奥克兰突袭者国家橄榄球联盟(]年至今)联会冠军(5)分区冠军(15)拉斯维加斯袭击者(英语: Las Vegas Raiders)又译拉斯维加斯侵略者或拉斯维加斯突击者,是一支主场位于美国内华达州拉斯维加斯的职业美
  • 抱卵亚目见内文抱卵亚目(学名:Pleocyemata),又称腹胚亚目,是甲壳亚门十足目中的一个亚目,它是1963年由马丁·布尔肯罗德(Martin Burkenroad)提出的。通过引入抱卵亚目,布尔肯罗德使用单系群的
  • 毛孔性红糠疹毛孔性红糠疹(英语:Pityriasis rubra pilaris,又称为 Devergie's disease 、Lichen ruber acuminatus 或Lichen ruber pilaris,PRP)是一种慢性鳞屑性皮肤病,其特征为红橙色脱屑、
  • 革命马克思主义党革命马克思主义党(英语:Revolutionary Marxist Party)是印度喀拉拉邦的一个共产主义政党。该党的创始人是T.P. Chandrasekharan。该党已经在喀拉拉邦的许多个区建立了组织。该
  • 亨利·卢梭亨利·朱利安·费利克斯·卢梭(Henri Julien Félix Rousseau、1844年5月21日-1910年9月2日)是法国后印象派画家,以纯真、原始的风格著称。 他曾经是一名海关的收税员,也是自学成
  • 多明戈斯·达吉亚多明戈斯·达吉亚(葡萄牙语:Domingos Antônio da Guia,1912年11月19日-2000年5月18日)是一名巴西足球运动员。 1938年国际足联世界杯上,他为巴西国家足球队出场四次。他被认为是