克莱姆法则

✍ dations ◷ 2025-04-02 20:38:34 #线性代数,代数定理,矩阵分解,行列式计算

向量 · 向量空间  · 行列式  · 矩阵

标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积

矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·

线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 ·

克莱姆法则(英语:Cramer's rule),又称为克拉玛公式、克拉默法则,是一个线性代数中的定理,用行列式来计算出线性等式组中的所有解。这个定理因加百列·克莱姆(1704年 - 1752年)的卓越使用而命名。在计算上,并非最有效率之法,因而在很多条等式的情况中没有广泛应用。不过,这一定理在理论性方面十分有效。

一个线性方程组可以用矩阵与向量的方程来表示:

其中的 A {\displaystyle A} 列的列向量后得到的矩阵。为了方便,我们通常使用 Δ {\displaystyle \Delta } 的系数的 n × n {\displaystyle n\times n} 的行列式,以及 I {\displaystyle I} 就是单位矩阵。

对于 n {\displaystyle n} 元线性方程组 A x = c {\displaystyle Ax=c}

把系数矩阵 A {\displaystyle {\begin{smallmatrix}A\end{smallmatrix}}} 表示成列向量的形式

A = ( u 1 , u 2 , , u n ) {\displaystyle A=\left(u_{1},u_{2},\cdots ,u_{n}\right)}

由于系数矩阵可逆,故方程组一定有解 x = A 1 c {\displaystyle x^{*}=A^{-1}c} .

x = ( x 1 , x 2 , , x n ) T {\displaystyle x^{*}=(x_{1},x_{2},\cdots ,x_{n})^{T}} ,即

A x = k = 1 n x k u k = c {\displaystyle Ax^{*}=\sum _{k=1}^{n}x_{k}u_{k}=c}

考虑 Δ i {\displaystyle \Delta _{i}} 的值,利用行列式的线性和交替性质,有

Δ i = d e t ( , u i 1 , c , u i + 1 , ) = d e t ( , u i 1 , k = 1 n x k u k , u i + 1 , ) = k = 1 n x k d e t ( , u i 1 , u k , u i + 1 , ) = x i d e t ( , u i 1 , u i , u i + 1 , ) = x i Δ {\displaystyle {\begin{aligned}\Delta _{i}&=det\left(\cdots ,u_{i-1},c,u_{i+1},\cdots \right)\\&=det\left(\cdots ,u_{i-1},\sum _{k=1}^{n}x_{k}u_{k},u_{i+1},\cdots \right)\\&=\sum _{k=1}^{n}x_{k}\cdot det\left(\cdots ,u_{i-1},u_{k},u_{i+1},\cdots \right)\\&=x_{i}\cdot det\left(\cdots ,u_{i-1},u_{i},u_{i+1},\cdots \right)\\&=x_{i}\Delta \end{aligned}}}

于是

x i = Δ i Δ {\displaystyle x_{i}={\frac {\Delta _{i}}{\Delta }}}

运用克莱姆法则可以很有效地解决以下方程组。

已知:

使用矩阵来表示时就是:

当矩阵可逆时,x和y可以从克莱姆法则中得出:

用3×3矩阵的情况亦差不多。

已知:

当中的矩阵表示为:

当矩阵可逆时,可以求出x、y和z:

克莱姆法则在解决微分几何的问题时十分有用。

先考虑两条等式 F ( x , y , u , v ) = 0 {\displaystyle F(x,y,u,v)=0\,} G ( x , y , u , v ) = 0 {\displaystyle G(x,y,u,v)=0\,} 。其中的u和v是需要考虑的变量,并且它们互不相关。我们可定义 x = X ( u , v ) {\displaystyle x=X(u,v)\,} y = Y ( u , v ) {\displaystyle y=Y(u,v)\,}

找出一条等式适合 x / u {\displaystyle \partial x/\partial u} 是克莱姆法则的简单应用。

首先,我们要计算 F {\displaystyle F} G {\displaystyle G} x {\displaystyle x} y {\displaystyle y} 的导数:

d x {\displaystyle dx} d y {\displaystyle dy} 代入 d F {\displaystyle dF} d G {\displaystyle dG} ,可得出:

因为 u {\displaystyle u} v {\displaystyle v} 互不相关,所以 d u {\displaystyle du} d v {\displaystyle dv} 的系数都要等于0。所以等式中的系数可以被写成:

现在用克莱姆法则就可得到:

用两个雅可比矩阵来表示的方程:

用类似的方法就可以找到 x v {\displaystyle {\frac {\partial x}{\partial v}}} y u {\displaystyle {\frac {\partial y}{\partial u}}} 以及 y v {\displaystyle {\frac {\partial y}{\partial v}}}

克莱姆法则可以用来证明一些线性代数中的定理,当中的定理对环理论十分有用。

克莱姆法则可以用来证明一个线性规划问题有一个基本整数的解。这样使得线性规划的问题更容易被解决。

相关

  • 糖肽类抗生素糖肽类抗生素(glycopeptide antibiotic)是指一类化学本质为有糖基修饰的多肽链的抗生素。组成糖肽类抗生素的多肽可能是环形或线性,由属于非核糖体合成肽。糖肽类抗生素的达到
  • 发言人发言人,或称“新闻发言人”、“新闻官”,是代表其他自然人或法人(如公司、政府或其他机构)的身份发言,并向记者宣传情况、回答提问的公共关系人员。许多政府部门和企业都有专任的
  • 陈佳洱陈佳洱(1934年10月1日-),上海人,中国加速器物理学家,核物理学家,中国科学院院士及北京大学校长(1996—1999)。父亲是儿童文学作家陈伯吹。1934年10月1日出生于上海市。1950年就读于大
  • 厄德巴黎的厄德(法语:Eudes de Paris,860年1月1日-898年1月3日),西法兰克国王。他是巴黎伯爵强者罗贝尔和他的第二位夫人的儿子。厄德的父亲死后西法兰克国王夏尔二世占据了厄德应有
  • 青蒿青蒿(学名:Artemisia carvifolia)是菊科蒿属的一种植物。二年生草本。茎直立,上部多分枝,具纵棱线。叶子互生,茎中部的叶子二回羽状分裂,线形小裂片。夏季开花,头状花序半球形,多数,成
  • 八重山八重山群岛,也称八重山诸岛(日语:八重山列島/やえやまれっとう Yaeyama Rettō */?,琉球语:八重山/ヤイマ Yaima),为琉球群岛西部的岛屿群,位于钓鱼台群岛的南方,宫古群岛的西方。其
  • 双唇挤喉擦音双唇挤喉擦音(Bilabial ejective fricative)是一种辅音,出现于一些口语中。双唇挤喉擦音的国际音标(IPA)写作⟨ɸʼ⟩,其等价的X-SAMPA音标则记作p\_>双唇挤喉擦音的特征包括:当符
  • 棕果蝠棕果蝠(Leschenault's rousette;),又叫印度果蝠,是一种原产东南亚的一种果蝠。棕果蝠分布范围包括巴基斯坦、印度、斯里兰卡、阿萨姆、华南、爪哇及越南 。有别于一般果蝠,棕果蝠
  • .lb.lb为黎巴嫩国家及地区顶级域(ccTLD)的域名。A .ac .ad .ae .af .ag .ai .al .am .ao .aq .ar .as .at .au .aw .ax .az  B .ba .bb .bd .be .bf .bg .bh .bi .bj .bm .bn
  • 临武县第一中学坐标:25°16′47″N 112°33′37″E / 25.279607°N 112.560296°E / 25.279607; 112.560296临武县第一中学(英语:No.1 Meddle School Linwu County)位于湖南省郴州市临武县城关