克莱姆法则

✍ dations ◷ 2025-06-29 17:10:39 #线性代数,代数定理,矩阵分解,行列式计算

向量 · 向量空间  · 行列式  · 矩阵

标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积

矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·

线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 ·

克莱姆法则(英语:Cramer's rule),又称为克拉玛公式、克拉默法则,是一个线性代数中的定理,用行列式来计算出线性等式组中的所有解。这个定理因加百列·克莱姆(1704年 - 1752年)的卓越使用而命名。在计算上,并非最有效率之法,因而在很多条等式的情况中没有广泛应用。不过,这一定理在理论性方面十分有效。

一个线性方程组可以用矩阵与向量的方程来表示:

其中的 A {\displaystyle A} 列的列向量后得到的矩阵。为了方便,我们通常使用 Δ {\displaystyle \Delta } 的系数的 n × n {\displaystyle n\times n} 的行列式,以及 I {\displaystyle I} 就是单位矩阵。

对于 n {\displaystyle n} 元线性方程组 A x = c {\displaystyle Ax=c}

把系数矩阵 A {\displaystyle {\begin{smallmatrix}A\end{smallmatrix}}} 表示成列向量的形式

A = ( u 1 , u 2 , , u n ) {\displaystyle A=\left(u_{1},u_{2},\cdots ,u_{n}\right)}

由于系数矩阵可逆,故方程组一定有解 x = A 1 c {\displaystyle x^{*}=A^{-1}c} .

x = ( x 1 , x 2 , , x n ) T {\displaystyle x^{*}=(x_{1},x_{2},\cdots ,x_{n})^{T}} ,即

A x = k = 1 n x k u k = c {\displaystyle Ax^{*}=\sum _{k=1}^{n}x_{k}u_{k}=c}

考虑 Δ i {\displaystyle \Delta _{i}} 的值,利用行列式的线性和交替性质,有

Δ i = d e t ( , u i 1 , c , u i + 1 , ) = d e t ( , u i 1 , k = 1 n x k u k , u i + 1 , ) = k = 1 n x k d e t ( , u i 1 , u k , u i + 1 , ) = x i d e t ( , u i 1 , u i , u i + 1 , ) = x i Δ {\displaystyle {\begin{aligned}\Delta _{i}&=det\left(\cdots ,u_{i-1},c,u_{i+1},\cdots \right)\\&=det\left(\cdots ,u_{i-1},\sum _{k=1}^{n}x_{k}u_{k},u_{i+1},\cdots \right)\\&=\sum _{k=1}^{n}x_{k}\cdot det\left(\cdots ,u_{i-1},u_{k},u_{i+1},\cdots \right)\\&=x_{i}\cdot det\left(\cdots ,u_{i-1},u_{i},u_{i+1},\cdots \right)\\&=x_{i}\Delta \end{aligned}}}

于是

x i = Δ i Δ {\displaystyle x_{i}={\frac {\Delta _{i}}{\Delta }}}

运用克莱姆法则可以很有效地解决以下方程组。

已知:

使用矩阵来表示时就是:

当矩阵可逆时,x和y可以从克莱姆法则中得出:

用3×3矩阵的情况亦差不多。

已知:

当中的矩阵表示为:

当矩阵可逆时,可以求出x、y和z:

克莱姆法则在解决微分几何的问题时十分有用。

先考虑两条等式 F ( x , y , u , v ) = 0 {\displaystyle F(x,y,u,v)=0\,} G ( x , y , u , v ) = 0 {\displaystyle G(x,y,u,v)=0\,} 。其中的u和v是需要考虑的变量,并且它们互不相关。我们可定义 x = X ( u , v ) {\displaystyle x=X(u,v)\,} y = Y ( u , v ) {\displaystyle y=Y(u,v)\,}

找出一条等式适合 x / u {\displaystyle \partial x/\partial u} 是克莱姆法则的简单应用。

首先,我们要计算 F {\displaystyle F} G {\displaystyle G} x {\displaystyle x} y {\displaystyle y} 的导数:

d x {\displaystyle dx} d y {\displaystyle dy} 代入 d F {\displaystyle dF} d G {\displaystyle dG} ,可得出:

因为 u {\displaystyle u} v {\displaystyle v} 互不相关,所以 d u {\displaystyle du} d v {\displaystyle dv} 的系数都要等于0。所以等式中的系数可以被写成:

现在用克莱姆法则就可得到:

用两个雅可比矩阵来表示的方程:

用类似的方法就可以找到 x v {\displaystyle {\frac {\partial x}{\partial v}}} y u {\displaystyle {\frac {\partial y}{\partial u}}} 以及 y v {\displaystyle {\frac {\partial y}{\partial v}}}

克莱姆法则可以用来证明一些线性代数中的定理,当中的定理对环理论十分有用。

克莱姆法则可以用来证明一个线性规划问题有一个基本整数的解。这样使得线性规划的问题更容易被解决。

相关

  • 四词谬误四词谬误(英语:fallacy of four terms;拉丁语:quaternio terminorum)是一种形式谬误,系因三段论含有四个以上的词项,导致论证无效。传统的三段论只牵涉三个词项,如以下论证包含了三
  • bNMDAR/bN-甲基-D-天门冬胺酸受体(英语:N-methyl-D-aspartate receptor,简称NMDA受体或NMDAR)为麸胺酸盐受体,是一个主要的分子装置,控制突触的可塑性与记忆功能。NMDA受体是一种离子型麸
  • 锹形虫锹形虫(学名:Lucanidae、英语:stag beetle是锹形虫科昆虫的总称,全世界约有1,200种。雄虫通常有夸张美观,角一般的大颚,并非用来咀嚼食物,其用途为对抗天敌与打斗及争夺食物、地盘
  • 香附香附(学名:Cyperus rotundus),别名莎草、大香附、香头草、土香草、土香(台湾和闽南一带)、水香棱、地藾草,为莎草科的多年生草本植物,茎直立,三棱形,高40厘米;叶近基生出,细长,呈线形,略比
  • QS《QS世界大学排名》(英文:QS World University Rankings)为英国Quacquarelli Symonds发表的年度大学排行榜。QS公司最初与《泰晤士高等教育》增刊合作,两者于2004-2009年期间联
  • 圣保禄学院圣保禄学院(葡萄牙语:Colégio de São Paulo;或称天主圣母学院)是耶稣会在1594年于澳门创立的一间天主教高等学院(接近当时欧洲的大学),亦为中国的第一所西式高等教育学校,位置座落
  • 赵家楼赵家楼位于北京市东城区长安街以的北前赵家楼胡同。赵家楼原为明穆宗隆庆朝文渊阁大学士赵贞吉的宅邸,因后花园假山上建有亭台,远望似楼故得名。清末至民国成为新交通系高官曹
  • 阿尔贝托·莫拉维亚阿尔贝托·莫拉维亚(Alberto Moravia,1907年11月28日-1990年9月26日),原名Alberto Pincherle,是20世纪意大利著名小说家。阿尔贝托·莫拉维亚生于罗马的一个中产阶级家庭,莫拉维亚
  • 希伯·柯蒂斯希伯·道斯特·柯蒂斯(英语:Heber Doust Curtis,1872年6月27日-1942年1月9日),美国天文学家。柯蒂斯1872年出生于美国密歇根州的马斯基根,1893年在密歇根大学获得硕士学位,后在加利
  • 范成大范成大(1126年-1193年),字致能,一字幼元,早年自号此山居士,晚号石湖居士,谥文穆,吴郡(今江苏苏州)人,南宋官员、诗人、文学家。宋代绍兴二十四年(1154年)中进士,初授司户参军,历官监“和剂局