克莱姆法则

✍ dations ◷ 2025-07-09 15:02:44 #线性代数,代数定理,矩阵分解,行列式计算

向量 · 向量空间  · 行列式  · 矩阵

标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积

矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·

线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 ·

克莱姆法则(英语:Cramer's rule),又称为克拉玛公式、克拉默法则,是一个线性代数中的定理,用行列式来计算出线性等式组中的所有解。这个定理因加百列·克莱姆(1704年 - 1752年)的卓越使用而命名。在计算上,并非最有效率之法,因而在很多条等式的情况中没有广泛应用。不过,这一定理在理论性方面十分有效。

一个线性方程组可以用矩阵与向量的方程来表示:

其中的 A {\displaystyle A} 列的列向量后得到的矩阵。为了方便,我们通常使用 Δ {\displaystyle \Delta } 的系数的 n × n {\displaystyle n\times n} 的行列式,以及 I {\displaystyle I} 就是单位矩阵。

对于 n {\displaystyle n} 元线性方程组 A x = c {\displaystyle Ax=c}

把系数矩阵 A {\displaystyle {\begin{smallmatrix}A\end{smallmatrix}}} 表示成列向量的形式

A = ( u 1 , u 2 , , u n ) {\displaystyle A=\left(u_{1},u_{2},\cdots ,u_{n}\right)}

由于系数矩阵可逆,故方程组一定有解 x = A 1 c {\displaystyle x^{*}=A^{-1}c} .

x = ( x 1 , x 2 , , x n ) T {\displaystyle x^{*}=(x_{1},x_{2},\cdots ,x_{n})^{T}} ,即

A x = k = 1 n x k u k = c {\displaystyle Ax^{*}=\sum _{k=1}^{n}x_{k}u_{k}=c}

考虑 Δ i {\displaystyle \Delta _{i}} 的值,利用行列式的线性和交替性质,有

Δ i = d e t ( , u i 1 , c , u i + 1 , ) = d e t ( , u i 1 , k = 1 n x k u k , u i + 1 , ) = k = 1 n x k d e t ( , u i 1 , u k , u i + 1 , ) = x i d e t ( , u i 1 , u i , u i + 1 , ) = x i Δ {\displaystyle {\begin{aligned}\Delta _{i}&=det\left(\cdots ,u_{i-1},c,u_{i+1},\cdots \right)\\&=det\left(\cdots ,u_{i-1},\sum _{k=1}^{n}x_{k}u_{k},u_{i+1},\cdots \right)\\&=\sum _{k=1}^{n}x_{k}\cdot det\left(\cdots ,u_{i-1},u_{k},u_{i+1},\cdots \right)\\&=x_{i}\cdot det\left(\cdots ,u_{i-1},u_{i},u_{i+1},\cdots \right)\\&=x_{i}\Delta \end{aligned}}}

于是

x i = Δ i Δ {\displaystyle x_{i}={\frac {\Delta _{i}}{\Delta }}}

运用克莱姆法则可以很有效地解决以下方程组。

已知:

使用矩阵来表示时就是:

当矩阵可逆时,x和y可以从克莱姆法则中得出:

用3×3矩阵的情况亦差不多。

已知:

当中的矩阵表示为:

当矩阵可逆时,可以求出x、y和z:

克莱姆法则在解决微分几何的问题时十分有用。

先考虑两条等式 F ( x , y , u , v ) = 0 {\displaystyle F(x,y,u,v)=0\,} G ( x , y , u , v ) = 0 {\displaystyle G(x,y,u,v)=0\,} 。其中的u和v是需要考虑的变量,并且它们互不相关。我们可定义 x = X ( u , v ) {\displaystyle x=X(u,v)\,} y = Y ( u , v ) {\displaystyle y=Y(u,v)\,}

找出一条等式适合 x / u {\displaystyle \partial x/\partial u} 是克莱姆法则的简单应用。

首先,我们要计算 F {\displaystyle F} G {\displaystyle G} x {\displaystyle x} y {\displaystyle y} 的导数:

d x {\displaystyle dx} d y {\displaystyle dy} 代入 d F {\displaystyle dF} d G {\displaystyle dG} ,可得出:

因为 u {\displaystyle u} v {\displaystyle v} 互不相关,所以 d u {\displaystyle du} d v {\displaystyle dv} 的系数都要等于0。所以等式中的系数可以被写成:

现在用克莱姆法则就可得到:

用两个雅可比矩阵来表示的方程:

用类似的方法就可以找到 x v {\displaystyle {\frac {\partial x}{\partial v}}} y u {\displaystyle {\frac {\partial y}{\partial u}}} 以及 y v {\displaystyle {\frac {\partial y}{\partial v}}}

克莱姆法则可以用来证明一些线性代数中的定理,当中的定理对环理论十分有用。

克莱姆法则可以用来证明一个线性规划问题有一个基本整数的解。这样使得线性规划的问题更容易被解决。

相关

  • 认知功能认知或认识(英语:cognition)在心理学中是指通过形成概念、知觉、判断或想象等心理活动来获取知识的过程,即个体思维进行信息处理的心理功能。认知过程可以是自然的或人造的、有
  • 七人制橄榄球七人制橄榄球于2016年夏季奥运开始成为正式的奥运项目。该项目于2009年10月在哥本哈根召开的第121届国际奥委会全体会议中确认为正式比赛项目。
  • 比利时国家银行比利时国家银行(荷兰语:Nationale Bank van België,法语:Banque nationale de Belgique,德语:Belgische Nationalbank)是比利时的中央银行,也是欧洲中央银行的会员之一。比利时国家
  • 本贯本贯(韩语:본관)是朝鲜半岛上的氏族概念,用以区别朝鲜族内部同姓氏族间的差异。本贯维系了一群拥有相同父系血缘的宗族,因此本贯被视为朝鲜族人名的一部分。子女会继承父亲的本贯
  • 验票验票是选票重复查验投票结果,用来确定原始数据的正确性。如果选举期间的初始投票结果非常接近,则通常会进行重新计票。选举重新计票通常会导致比赛结果发生变化。可以从人为因
  • 口诀 (朝鲜语)陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文 籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆) 隶书 ‧ 楷书 ‧ 行书 ‧ 草书 漆书 ‧  书法 ‧ 飞白书笔画 
  • 纯情的Afilia纯情的Afilia(日语:純情のアフィリア)是日本的王立Afilia魔法学院连锁女仆咖啡厅,由各分店的代表成员组成的女子偶像团体。成员主要由Afilia Group连锁女仆咖啡厅集团各店选出的
  • 首次亮相在漫画书及其他具有较长历史的故事系列中,首次亮相(英语:first appearance)是指首次对虚构角色进行主要介绍的一期漫画、读本等。这类读物因为十分稀有,而且对于该角色日后的出场
  • 艾拉姆·科巴尼安艾拉姆·科巴尼安(英语:Aram V. Chobanian,1929年8月8日-),亚美尼亚裔美国人,是波士顿大学现任校长,亚美尼亚国家科学院外籍院士。他的专业是心脏科医生,原是波士顿大学医学院的院长,2
  • 甲斐姬甲斐姬(日语:甲斐姫/かいひめ ,1572年-?)是日本战国时代忍城城主成田氏长(日语:成田氏長)的长女,丰臣秀吉的侧室。天正18年(1590年)小田原征伐爆发,氏长前往小田原城支援,留下的甲斐姬和其