广义频谱图

✍ dations ◷ 2025-11-20 03:06:54 #声学,信号处理

广义频谱图(Generalized spectrogram),为频谱图的通用型。为了得知信号随着时间的频率分布状态,以频谱图观察时,其分辨率受到测不准原理影响,频率分辨率与时间分辨率相乘为定值。为解决此问题,于是将频谱图推广至广义频谱图。

一段随时间变化的信号,同时具有时域和频域的特征,若想要了解一个信号在某段时间内的频率特征,最好的方式就是使用时频分析,观察一段信号的时频分布图。频谱图(Spectrogram)就是其中一种同时表示时间和频率特征的分布图。

以高斯函数作为窗函数(window function),使用时频分析,求出两组不同长度的窗函数的加伯转换,即 G x , w 1 ( t , f ) {\displaystyle {G_{x,{w_{1}}}}\left({t,f}\right)} G x , w 2 ( t , f ) {\displaystyle {G_{x,{w_{2}}}}\left({t,f}\right)} ,再将 G x , w 2 ( t , f ) {\displaystyle {G_{x,{w_{2}}}}\left({t,f}\right)} 取共轭复数后相乘。公式如下:

S P x , w 1 , w 2 ( t , f ) = G x , w 1 ( t , f ) G x , w 2 ( t , f ) {\displaystyle S{P_{x,{w_{1}},{w_{2}}}}(t,f)=G_{x,{w_{1}}}(t,f)G_{x,{w_{2}}}^{*}(t,f)}

其中 w 1 ( t ) , w 2 ( t ) {\displaystyle w_{1}(t),w_{2}(t)} 为加伯转换的窗函数, t {\displaystyle t} 为时间 f {\displaystyle f} 为频率。

加伯转换的公式如下:

G x , w 1 ( t , f ) = w 1 ( t τ ) x ( τ ) e j 2 π f τ d τ {\displaystyle {G_{x,{w_{1}}}}\left({t,f}\right)=\int _{-\infty }^{\infty }{{w_{1}}\left({t-\tau }\right)x\left(\tau \right)\,{e^{-j2\pi \,f\,\tau }}d\tau }}

G x , w 2 ( t , f ) = w 2 ( t τ ) x ( τ ) e j 2 π f τ d τ {\displaystyle {G_{x,{w_{2}}}}\left({t,f}\right)=\int _{-\infty }^{\infty }{{w_{2}}\left({t-\tau }\right)x\left(\tau \right)\,{e^{-j2\pi \,f\,\tau }}d\tau }}

若将 w 1 ( t ) = w 2 ( t ) {\displaystyle w_{1}(t)=w_{2}(t)} ,则与原本频谱图无异。

长度不同的窗函数,其时频域的分辨率不同,依据测不准原理,较窄的窗函数,时间分辨率较好,而频率分辨率较差;相反的,较宽的窗函数,频率分辨率较好,而时间分辨率较差。

为了同时在时间和频率轴上都达到更好的分辨率,把在频谱图原定义中的 w ( t ) {\displaystyle w(t)} 分为两个长短不同的波形。例如 : 可以让 w 1 ( t ) {\displaystyle w_{1}(t)} 长度较宽,在频域上面有良好的分辨率,而 w 2 ( t ) {\displaystyle w_{2}(t)} 则长度较窄,在时域上有良好的分辨率。先分别运算 G x , w 1 ( t , f ) {\displaystyle {G_{x,{w_{1}}}}\left({t,f}\right)} G x , w 2 ( t , f ) {\displaystyle {G_{x,{w_{2}}}}\left({t,f}\right)} ,再相乘,变为 S P x , w 1 , w 2 ( t , f ) {\displaystyle S{P_{x,{w_{1}},{w_{2}}}}\left({t,f}\right)} 。如此一来时域和频域上的分辨率都能兼顾到。

当我们的输入信号为:

我们先分别求出 σ = 0.1 {\displaystyle \sigma =0.1} σ = 1.6 {\displaystyle \sigma =1.6} 的 。经Matlab计算后,如下图

将其中一个取共轭复数后,两者相乘,得到广义频谱图如下;

我们可以与 σ = 0.4 {\displaystyle \sigma =0.4} 的加伯转换比较:

可以发现广义频谱图无论是在时间分辨率下,或是频率分辨率下,都优于 σ = 0.4 {\displaystyle \sigma =0.4} 的加伯转换。

原本的广义频谱图公式为 S P x , w 1 , w 2 ( t , f ) = G x , w 1 ( t , f ) G x , w 2 ( t , f ) {\displaystyle S{P_{x,{w_{1}},{w_{2}}}}(t,f)={G_{x,{w_{1}}}}(t,f)G_{x,{w_{2}}}^{*}(t,f)}

我们可以对此再进行一般化,如下

S P x , w 1 , w 2 ( t , f ) = G x , w 1 α ( t , f ) G x , w 2 β ( t , f ) {\displaystyle S{P_{x,{w_{1}},{w_{2}}}}(t,f)=G_{x,{w_{1}}}^{\alpha }(t,f)G_{x,{w_{2}}}^{\beta }(t,f)}

或者如下方形式:

S P x , w 1 , w 2 ( t , f ) = | G x , w 1 ( t , f ) | α | G x , w 2 ( t , f ) | β {\displaystyle S{P_{x,{w_{1}},{w_{2}}}}(t,f)=\left|G_{x,{w_{1}}}(t,f)\right|^{\alpha }\left|G_{x,{w_{2}}}(t,f)\right|^{\beta }}

两种方法新增了 α {\displaystyle \alpha } β {\displaystyle \beta } 两变数,期望能找到更好的分辨率。

相关

  • 反转录酶结构 / ECOD(RNA-dependent DNA polymerase,RDDP)逆转录酶是一类存在于部分RNA病毒中具有逆转录活性、能以单链RNA为模板合成DNA的酶。由逆转录酶催化逆转录合成的DNA称为互补D
  • 尼美舒利尼美舒利是一种人工合成的COX-2特异性抑制剂,为非类固醇消炎止痛药,具有镇痛和退热的作用。尼美舒利被用于治疗12岁以上成人的疼痛、退化性关节炎和痛经等。因为有出现肝中毒
  • 吸气吸入是指动物进行呼吸时,空气或其他物质经由气管进入肺泡的运动。主要是由横膈膜的收缩与舒张来控制。当吸入空气时,横隔膜会呈平形,肺里的空气体积会增加,气压则会减少。
  • 北朝鲜委会苏联红军票、朝鲜银行券 (1945年-1947年)君主 · 首都 · 文学史 · 教育史电影史 · 韩医史陶瓷史 · 戏剧史韩国国宝 · 朝鲜国宝北朝鲜临时人民委员会(韩语:북조선임
  • 伯贝克学院伦敦大学伯贝克学院(Birkbeck, University of London)由George Birkbeck创立于公元1823年。原名为伦敦机械学院(London Mechanics Institute),1907年改名为伯贝克学院,1920年正式
  • 清政府清朝政府,或称清政府、清廷,是指大清的治权机构,始于后金政权,长达296年,至1912年宣统帝退位后终结。清政府末代总理为袁世凯。清朝政府最初的行政架构始设于后金皇太极时期,天聪
  • 好莱坞露天剧场好莱坞露天剧场(Hollywood Bowl),是一座位于美国加利福尼亚州好莱坞北部高地大道(North Highland Avenue)2301号的现代露天剧场,最初是音乐表演场地。其正式开幕于1922年,原址是被
  • 七鳃鳗亚纲Hyperoartia七鳃鳗亚纲(学名:Petromyzontida),又名八目鳗纲,是脊索动物门圆口纲下的一亚纲。目前已知共有现存 38 种、已灭绝 5 种的七鳃鳗,其中 18 种为寄生性的肉食动物,钻入鱼类
  • 游丝游丝是一种很细的弹簧。通常以钢作为材质,盘绕在摆轮周围。游丝有效长度的变化决定了摆轮的惯性力矩与振幅周期。游丝是影响走时准确的因素之一。游丝的材料通常使用锡青铜或
  • 镇江赛珍珠故居赛珍珠故居 (镇江)是美国作家赛珍珠(Pearl S. Buck)在中国江苏镇江的故居,位于润州山路6号。赛珍珠在镇江约生活了18年。1887年,赛珍珠的父亲,美南长老会(American Presbyterians