广义频谱图

✍ dations ◷ 2025-04-04 11:57:24 #声学,信号处理

广义频谱图(Generalized spectrogram),为频谱图的通用型。为了得知信号随着时间的频率分布状态,以频谱图观察时,其分辨率受到测不准原理影响,频率分辨率与时间分辨率相乘为定值。为解决此问题,于是将频谱图推广至广义频谱图。

一段随时间变化的信号,同时具有时域和频域的特征,若想要了解一个信号在某段时间内的频率特征,最好的方式就是使用时频分析,观察一段信号的时频分布图。频谱图(Spectrogram)就是其中一种同时表示时间和频率特征的分布图。

以高斯函数作为窗函数(window function),使用时频分析,求出两组不同长度的窗函数的加伯转换,即 G x , w 1 ( t , f ) {\displaystyle {G_{x,{w_{1}}}}\left({t,f}\right)} G x , w 2 ( t , f ) {\displaystyle {G_{x,{w_{2}}}}\left({t,f}\right)} ,再将 G x , w 2 ( t , f ) {\displaystyle {G_{x,{w_{2}}}}\left({t,f}\right)} 取共轭复数后相乘。公式如下:

S P x , w 1 , w 2 ( t , f ) = G x , w 1 ( t , f ) G x , w 2 ( t , f ) {\displaystyle S{P_{x,{w_{1}},{w_{2}}}}(t,f)=G_{x,{w_{1}}}(t,f)G_{x,{w_{2}}}^{*}(t,f)}

其中 w 1 ( t ) , w 2 ( t ) {\displaystyle w_{1}(t),w_{2}(t)} 为加伯转换的窗函数, t {\displaystyle t} 为时间 f {\displaystyle f} 为频率。

加伯转换的公式如下:

G x , w 1 ( t , f ) = w 1 ( t τ ) x ( τ ) e j 2 π f τ d τ {\displaystyle {G_{x,{w_{1}}}}\left({t,f}\right)=\int _{-\infty }^{\infty }{{w_{1}}\left({t-\tau }\right)x\left(\tau \right)\,{e^{-j2\pi \,f\,\tau }}d\tau }}

G x , w 2 ( t , f ) = w 2 ( t τ ) x ( τ ) e j 2 π f τ d τ {\displaystyle {G_{x,{w_{2}}}}\left({t,f}\right)=\int _{-\infty }^{\infty }{{w_{2}}\left({t-\tau }\right)x\left(\tau \right)\,{e^{-j2\pi \,f\,\tau }}d\tau }}

若将 w 1 ( t ) = w 2 ( t ) {\displaystyle w_{1}(t)=w_{2}(t)} ,则与原本频谱图无异。

长度不同的窗函数,其时频域的分辨率不同,依据测不准原理,较窄的窗函数,时间分辨率较好,而频率分辨率较差;相反的,较宽的窗函数,频率分辨率较好,而时间分辨率较差。

为了同时在时间和频率轴上都达到更好的分辨率,把在频谱图原定义中的 w ( t ) {\displaystyle w(t)} 分为两个长短不同的波形。例如 : 可以让 w 1 ( t ) {\displaystyle w_{1}(t)} 长度较宽,在频域上面有良好的分辨率,而 w 2 ( t ) {\displaystyle w_{2}(t)} 则长度较窄,在时域上有良好的分辨率。先分别运算 G x , w 1 ( t , f ) {\displaystyle {G_{x,{w_{1}}}}\left({t,f}\right)} G x , w 2 ( t , f ) {\displaystyle {G_{x,{w_{2}}}}\left({t,f}\right)} ,再相乘,变为 S P x , w 1 , w 2 ( t , f ) {\displaystyle S{P_{x,{w_{1}},{w_{2}}}}\left({t,f}\right)} 。如此一来时域和频域上的分辨率都能兼顾到。

当我们的输入信号为:

我们先分别求出 σ = 0.1 {\displaystyle \sigma =0.1} σ = 1.6 {\displaystyle \sigma =1.6} 的 。经Matlab计算后,如下图

将其中一个取共轭复数后,两者相乘,得到广义频谱图如下;

我们可以与 σ = 0.4 {\displaystyle \sigma =0.4} 的加伯转换比较:

可以发现广义频谱图无论是在时间分辨率下,或是频率分辨率下,都优于 σ = 0.4 {\displaystyle \sigma =0.4} 的加伯转换。

原本的广义频谱图公式为 S P x , w 1 , w 2 ( t , f ) = G x , w 1 ( t , f ) G x , w 2 ( t , f ) {\displaystyle S{P_{x,{w_{1}},{w_{2}}}}(t,f)={G_{x,{w_{1}}}}(t,f)G_{x,{w_{2}}}^{*}(t,f)}

我们可以对此再进行一般化,如下

S P x , w 1 , w 2 ( t , f ) = G x , w 1 α ( t , f ) G x , w 2 β ( t , f ) {\displaystyle S{P_{x,{w_{1}},{w_{2}}}}(t,f)=G_{x,{w_{1}}}^{\alpha }(t,f)G_{x,{w_{2}}}^{\beta }(t,f)}

或者如下方形式:

S P x , w 1 , w 2 ( t , f ) = | G x , w 1 ( t , f ) | α | G x , w 2 ( t , f ) | β {\displaystyle S{P_{x,{w_{1}},{w_{2}}}}(t,f)=\left|G_{x,{w_{1}}}(t,f)\right|^{\alpha }\left|G_{x,{w_{2}}}(t,f)\right|^{\beta }}

两种方法新增了 α {\displaystyle \alpha } β {\displaystyle \beta } 两变数,期望能找到更好的分辨率。

相关

  • 羊膜破裂羊膜囊破裂(Rupture of membranes,简称ROM)是指孕妇的羊膜囊破裂。此时会有少量羊水从阴道流出,因此也称为破水。一般羊膜囊破裂是发生在妊娠期满,可能在分娩开始或是分娩过程中,
  • 气囊气囊(Air-bag,或称Supplementary Restraint System,缩写:SRS)指安装在汽车上的充气软囊,使用在车辆发生撞击事故的瞬间弹出,藉以达到缓冲的作用,保护驾驶和乘客的安全。一般而言,遭遇
  • 受体酪氨酸激酶结构 / ECOD受体酪氨酸激酶(Receptor tyrosine kinases,RTKs)为对多种多肽类生长因子、细胞因子,及激素具有高亲和性细胞表面受体。人类目前已知约有90种酪氨酸激酶基因,其中有59
  • 霍夫曼的故事霍夫曼的故事(Les Contes d`Hoffmann)是法国作曲家雅克·奥芬巴赫的最后一部歌剧,取材于德国浪漫派作家霍夫曼的小说,法语脚本由巴比埃和卡雷共同完成。1858年的《地狱中的奥尔
  • 阿蒙涅姆赫特三世阿蒙涅姆赫特三世 Amenemhat III(约公元前1842年~约公元前1797年在位)埃及第十二王朝法老。辛努塞尔特三世之子。在正式即位之前,他大约有20年时间是与父亲共治。在阿蒙涅姆赫
  • 角移在物理学中,角移(angular displacement)亦称为角位移,是一种物理量,用来描述一质点或物体绕某一轴所转过的角度,单位为弧度。角位移有大小和方向,但不满足平行四边形合成法则,所以一
  • α-酮异己酸α-酮异己酸(英语:α-Ketoisocaproic acid,缩写α-KIC)是亮氨酸代谢的中间产物。医学导航:遗传代谢缺陷代谢、k,c/g/r/p/y/i,f/h/s/l/o/e,a/u,n,mk,cgrp/y/i,f/h/s/l/o/e,au,n,m,
  • 布帛织物(英语:fabric),俗称布,是由纱线等带有纤维的材料制成的一种织品。可以由棉纱纺成棉布,也可以由人造纤维制成,或者以混合棉纱与人造纤维制成混纺布。布是很多日用品和工业产品的
  • 大逃杀大逃杀游戏(英语:Battle royale game)是一种电子游戏类型,它融合了生存游戏的探索和收集元素以及淘汰至最后一人的玩法。英文和中文名称皆来自1999年出版的日本小说《大逃杀》与
  • 邓迪东部足球俱乐部邓迪东部足球俱乐部(英语:Dundee East End F.C.)是一个位于苏格兰邓迪的足球俱乐部,于1877年创办,1893年与邓迪我们男孩足球俱乐部合并组成邓迪足球俱乐部而解散。俱乐部在1882年