广义频谱图

✍ dations ◷ 2025-08-02 14:11:03 #声学,信号处理

广义频谱图(Generalized spectrogram),为频谱图的通用型。为了得知信号随着时间的频率分布状态,以频谱图观察时,其分辨率受到测不准原理影响,频率分辨率与时间分辨率相乘为定值。为解决此问题,于是将频谱图推广至广义频谱图。

一段随时间变化的信号,同时具有时域和频域的特征,若想要了解一个信号在某段时间内的频率特征,最好的方式就是使用时频分析,观察一段信号的时频分布图。频谱图(Spectrogram)就是其中一种同时表示时间和频率特征的分布图。

以高斯函数作为窗函数(window function),使用时频分析,求出两组不同长度的窗函数的加伯转换,即 G x , w 1 ( t , f ) {\displaystyle {G_{x,{w_{1}}}}\left({t,f}\right)} G x , w 2 ( t , f ) {\displaystyle {G_{x,{w_{2}}}}\left({t,f}\right)} ,再将 G x , w 2 ( t , f ) {\displaystyle {G_{x,{w_{2}}}}\left({t,f}\right)} 取共轭复数后相乘。公式如下:

S P x , w 1 , w 2 ( t , f ) = G x , w 1 ( t , f ) G x , w 2 ( t , f ) {\displaystyle S{P_{x,{w_{1}},{w_{2}}}}(t,f)=G_{x,{w_{1}}}(t,f)G_{x,{w_{2}}}^{*}(t,f)}

其中 w 1 ( t ) , w 2 ( t ) {\displaystyle w_{1}(t),w_{2}(t)} 为加伯转换的窗函数, t {\displaystyle t} 为时间 f {\displaystyle f} 为频率。

加伯转换的公式如下:

G x , w 1 ( t , f ) = w 1 ( t τ ) x ( τ ) e j 2 π f τ d τ {\displaystyle {G_{x,{w_{1}}}}\left({t,f}\right)=\int _{-\infty }^{\infty }{{w_{1}}\left({t-\tau }\right)x\left(\tau \right)\,{e^{-j2\pi \,f\,\tau }}d\tau }}

G x , w 2 ( t , f ) = w 2 ( t τ ) x ( τ ) e j 2 π f τ d τ {\displaystyle {G_{x,{w_{2}}}}\left({t,f}\right)=\int _{-\infty }^{\infty }{{w_{2}}\left({t-\tau }\right)x\left(\tau \right)\,{e^{-j2\pi \,f\,\tau }}d\tau }}

若将 w 1 ( t ) = w 2 ( t ) {\displaystyle w_{1}(t)=w_{2}(t)} ,则与原本频谱图无异。

长度不同的窗函数,其时频域的分辨率不同,依据测不准原理,较窄的窗函数,时间分辨率较好,而频率分辨率较差;相反的,较宽的窗函数,频率分辨率较好,而时间分辨率较差。

为了同时在时间和频率轴上都达到更好的分辨率,把在频谱图原定义中的 w ( t ) {\displaystyle w(t)} 分为两个长短不同的波形。例如 : 可以让 w 1 ( t ) {\displaystyle w_{1}(t)} 长度较宽,在频域上面有良好的分辨率,而 w 2 ( t ) {\displaystyle w_{2}(t)} 则长度较窄,在时域上有良好的分辨率。先分别运算 G x , w 1 ( t , f ) {\displaystyle {G_{x,{w_{1}}}}\left({t,f}\right)} G x , w 2 ( t , f ) {\displaystyle {G_{x,{w_{2}}}}\left({t,f}\right)} ,再相乘,变为 S P x , w 1 , w 2 ( t , f ) {\displaystyle S{P_{x,{w_{1}},{w_{2}}}}\left({t,f}\right)} 。如此一来时域和频域上的分辨率都能兼顾到。

当我们的输入信号为:

我们先分别求出 σ = 0.1 {\displaystyle \sigma =0.1} σ = 1.6 {\displaystyle \sigma =1.6} 的 。经Matlab计算后,如下图

将其中一个取共轭复数后,两者相乘,得到广义频谱图如下;

我们可以与 σ = 0.4 {\displaystyle \sigma =0.4} 的加伯转换比较:

可以发现广义频谱图无论是在时间分辨率下,或是频率分辨率下,都优于 σ = 0.4 {\displaystyle \sigma =0.4} 的加伯转换。

原本的广义频谱图公式为 S P x , w 1 , w 2 ( t , f ) = G x , w 1 ( t , f ) G x , w 2 ( t , f ) {\displaystyle S{P_{x,{w_{1}},{w_{2}}}}(t,f)={G_{x,{w_{1}}}}(t,f)G_{x,{w_{2}}}^{*}(t,f)}

我们可以对此再进行一般化,如下

S P x , w 1 , w 2 ( t , f ) = G x , w 1 α ( t , f ) G x , w 2 β ( t , f ) {\displaystyle S{P_{x,{w_{1}},{w_{2}}}}(t,f)=G_{x,{w_{1}}}^{\alpha }(t,f)G_{x,{w_{2}}}^{\beta }(t,f)}

或者如下方形式:

S P x , w 1 , w 2 ( t , f ) = | G x , w 1 ( t , f ) | α | G x , w 2 ( t , f ) | β {\displaystyle S{P_{x,{w_{1}},{w_{2}}}}(t,f)=\left|G_{x,{w_{1}}}(t,f)\right|^{\alpha }\left|G_{x,{w_{2}}}(t,f)\right|^{\beta }}

两种方法新增了 α {\displaystyle \alpha } β {\displaystyle \beta } 两变数,期望能找到更好的分辨率。

相关

  • 内源内源性物质(英语:Endogenous substances)是体内代谢中产生的活性物质及最终产物,比如NH3、胺类、激素、胆色素、神经递质等都可以称为内源性物质。
  • 同塔省同塔省(越南语:Tỉnh Đồng Tháp/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","HAN NOM A","HAN NOM B","Ming-Lt-HKSCS-UNI-H"
  • 希尔德里克一世希尔德里克一世(法语:Childéric Ier,440年-481年6月26日),自457或​​458年起任萨利昂法兰克人国王。他的名字来自法兰克语hild-“战斗”和-rik“强大”,Childericus是其拉丁文形
  • 植物生理学植物生理学是植物学的一个分支科学,它研究植物的功能或生理学。密切相关的领域包括植物形态学(植物结构),植物生态学(与环境的相互作用),植物化学(植物的生物化学),细胞生物学,遗传学,生
  • .mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
  • 部分麦克斯韦-玻尔兹曼分布是一个描述一定温度下微观粒子运动速度的概率分布,在物理学和化学中有应用。最常见的应用是统计力学的领域。任何(宏观)物理系统的温度都是组成该系统的
  • 经济部水利署经济部水利署(简称水利署)为中华民国经济部所属之行政机关,主管全国河川、水利、水资源相关业务之推动及其政策、法规之拟订与执行。依照《环境资源部水资源保育署组织法》规划
  • 恋胸罩恋内衣是指与内衣相关的恋物癖,这些恋物癖者会从观看、穿脱、嗅闻某些类型的贴身衣物(包括胸罩、内裤、丝袜、裤袜)等而产生性兴奋,无论是实体的、或是描绘其内容的图像皆然。某
  • 斯巴达人密歇根州立大学斯巴达人队(Michigan State Spartans)是美国密歇根州立大学的代表队,征战NCAA顶级分区十大联盟的各项联赛。该队伍下属有25支不同项目的分队,包括橄榄球、篮球、
  • 韩国广播公司韩国广播公司(朝鲜语:한국방송공사/韓國放送公社 Han-guk Bangsong Gongsa,英语:Korean Broadcasting System),通称韩国放送(英语:KBS),亦可称为韩国广播电视台,为大韩民国最早的公营电