广义频谱图

✍ dations ◷ 2025-09-13 10:13:02 #声学,信号处理

广义频谱图(Generalized spectrogram),为频谱图的通用型。为了得知信号随着时间的频率分布状态,以频谱图观察时,其分辨率受到测不准原理影响,频率分辨率与时间分辨率相乘为定值。为解决此问题,于是将频谱图推广至广义频谱图。

一段随时间变化的信号,同时具有时域和频域的特征,若想要了解一个信号在某段时间内的频率特征,最好的方式就是使用时频分析,观察一段信号的时频分布图。频谱图(Spectrogram)就是其中一种同时表示时间和频率特征的分布图。

以高斯函数作为窗函数(window function),使用时频分析,求出两组不同长度的窗函数的加伯转换,即 G x , w 1 ( t , f ) {\displaystyle {G_{x,{w_{1}}}}\left({t,f}\right)} G x , w 2 ( t , f ) {\displaystyle {G_{x,{w_{2}}}}\left({t,f}\right)} ,再将 G x , w 2 ( t , f ) {\displaystyle {G_{x,{w_{2}}}}\left({t,f}\right)} 取共轭复数后相乘。公式如下:

S P x , w 1 , w 2 ( t , f ) = G x , w 1 ( t , f ) G x , w 2 ( t , f ) {\displaystyle S{P_{x,{w_{1}},{w_{2}}}}(t,f)=G_{x,{w_{1}}}(t,f)G_{x,{w_{2}}}^{*}(t,f)}

其中 w 1 ( t ) , w 2 ( t ) {\displaystyle w_{1}(t),w_{2}(t)} 为加伯转换的窗函数, t {\displaystyle t} 为时间 f {\displaystyle f} 为频率。

加伯转换的公式如下:

G x , w 1 ( t , f ) = w 1 ( t τ ) x ( τ ) e j 2 π f τ d τ {\displaystyle {G_{x,{w_{1}}}}\left({t,f}\right)=\int _{-\infty }^{\infty }{{w_{1}}\left({t-\tau }\right)x\left(\tau \right)\,{e^{-j2\pi \,f\,\tau }}d\tau }}

G x , w 2 ( t , f ) = w 2 ( t τ ) x ( τ ) e j 2 π f τ d τ {\displaystyle {G_{x,{w_{2}}}}\left({t,f}\right)=\int _{-\infty }^{\infty }{{w_{2}}\left({t-\tau }\right)x\left(\tau \right)\,{e^{-j2\pi \,f\,\tau }}d\tau }}

若将 w 1 ( t ) = w 2 ( t ) {\displaystyle w_{1}(t)=w_{2}(t)} ,则与原本频谱图无异。

长度不同的窗函数,其时频域的分辨率不同,依据测不准原理,较窄的窗函数,时间分辨率较好,而频率分辨率较差;相反的,较宽的窗函数,频率分辨率较好,而时间分辨率较差。

为了同时在时间和频率轴上都达到更好的分辨率,把在频谱图原定义中的 w ( t ) {\displaystyle w(t)} 分为两个长短不同的波形。例如 : 可以让 w 1 ( t ) {\displaystyle w_{1}(t)} 长度较宽,在频域上面有良好的分辨率,而 w 2 ( t ) {\displaystyle w_{2}(t)} 则长度较窄,在时域上有良好的分辨率。先分别运算 G x , w 1 ( t , f ) {\displaystyle {G_{x,{w_{1}}}}\left({t,f}\right)} G x , w 2 ( t , f ) {\displaystyle {G_{x,{w_{2}}}}\left({t,f}\right)} ,再相乘,变为 S P x , w 1 , w 2 ( t , f ) {\displaystyle S{P_{x,{w_{1}},{w_{2}}}}\left({t,f}\right)} 。如此一来时域和频域上的分辨率都能兼顾到。

当我们的输入信号为:

我们先分别求出 σ = 0.1 {\displaystyle \sigma =0.1} σ = 1.6 {\displaystyle \sigma =1.6} 的 。经Matlab计算后,如下图

将其中一个取共轭复数后,两者相乘,得到广义频谱图如下;

我们可以与 σ = 0.4 {\displaystyle \sigma =0.4} 的加伯转换比较:

可以发现广义频谱图无论是在时间分辨率下,或是频率分辨率下,都优于 σ = 0.4 {\displaystyle \sigma =0.4} 的加伯转换。

原本的广义频谱图公式为 S P x , w 1 , w 2 ( t , f ) = G x , w 1 ( t , f ) G x , w 2 ( t , f ) {\displaystyle S{P_{x,{w_{1}},{w_{2}}}}(t,f)={G_{x,{w_{1}}}}(t,f)G_{x,{w_{2}}}^{*}(t,f)}

我们可以对此再进行一般化,如下

S P x , w 1 , w 2 ( t , f ) = G x , w 1 α ( t , f ) G x , w 2 β ( t , f ) {\displaystyle S{P_{x,{w_{1}},{w_{2}}}}(t,f)=G_{x,{w_{1}}}^{\alpha }(t,f)G_{x,{w_{2}}}^{\beta }(t,f)}

或者如下方形式:

S P x , w 1 , w 2 ( t , f ) = | G x , w 1 ( t , f ) | α | G x , w 2 ( t , f ) | β {\displaystyle S{P_{x,{w_{1}},{w_{2}}}}(t,f)=\left|G_{x,{w_{1}}}(t,f)\right|^{\alpha }\left|G_{x,{w_{2}}}(t,f)\right|^{\beta }}

两种方法新增了 α {\displaystyle \alpha } β {\displaystyle \beta } 两变数,期望能找到更好的分辨率。

相关

  • 新元古代新元古代(英语:Neoproterozoic,符号NP)是地质时代中的一个代,开始于同位素年龄1000百万年(Ma),结束于542±0.3Ma。新元古代期间菌藻类继续繁盛,开始出现动物的化石。新元古代属于前寒
  • 三联疫苗三联疫苗可以指:
  • 头昏目眩头重脚轻(Lightheadedness)也称为头昏目眩,是头晕时常见,令人不悦的感觉,常伴随着可能会昏倒的感觉。头重脚轻的感觉可能是短期或长期的,偶尔也可能是慢性病。当时也可能会出现所
  • 瓦卢瓦王朝瓦卢瓦王朝(House of Valois),是卡佩王朝的支系,继卡佩家族后承继法国王权,并于1328年至1589年间统治法兰西王国。家族地位较低的成员在阿朗松、安茹、勃艮第和奥尔良等地建立其
  • 1181年重要事件及趋势重要人物
  • 反坦克地雷反坦克地雷(英语:Anti-Tank Mine,简称:AT Mine),是一种用于破坏或摧毁装甲战斗车辆的地雷。与反步兵地雷相比,反坦克地雷通常拥有更高分量的爆炸物,引信被改造成只会被载具触发。现
  • 北爱尔兰民主统一党民主统一党(英语:Democratic Unionist Party,缩写为DUP)是北爱尔兰亲英政党,成立于1971年。目前是北爱尔兰两大政党之一,与主张整个爱尔兰(爱尔兰共和国及北爱尔兰)完全脱离英国的新
  • 壹岐群岛壹岐岛是一个位于日本九州北方玄界滩的岛,南北17千米、东西14千米。壹岐岛除了本岛以外,还有21个附属岛屿:当中5个岛有人居住、其余16个岛是无人岛。壹岐岛的位置刚好在九州和
  • 永远忠诚永远忠诚(拉丁语:Semper fidelis,拉丁语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000"
  • 阿赖氨酸阿赖氨酸(英语:Allysine,也常根据结构写作ε-醛赖氨酸)是赖氨酸的氧化衍生物,用于弹性蛋白以及胶原的制备。阿赖氨酸的生成需要酵素赖胺酰氧化酶在胞外底物的催化,并且阿赖氨酸在