朗道-利夫希兹方程

✍ dations ◷ 2025-02-24 03:38:07 #粒子物理学,数学

在物理学上,朗道-利夫希兹-吉尔伯特方程(Landau–Lifshitz–Gilbert),是以列夫·达维多维奇·朗道、叶夫根尼·利夫希茨和T·L·吉尔伯特命名的物理方程,以差分方程为基础阐述一个进动磁性粒子的自发磁化。由T·L·吉尔伯特修改列夫·达维多维奇·朗道、叶夫根尼·利夫希茨的方程得到。该方程可以描述无外场作用下粒子受平均场作用而产生的运动。该方程直接暗示了自旋系统存在孤子。朗道-利夫希兹方程是非线性偏微分方程,该方程有单一孤子的严格解,对于多孤子情形,可以采取数值方法求解。该方程在在不同情形下模拟微磁性磁场的铁磁性磁场,尤其孤子于磁场的时阈行为。. 附加方程用于阐述自旋极化电流对磁体的影响。

设一个铁磁体,磁化强度M可在其内部发生变化,但每一点拥有相等的磁饱和强度MS.朗道-利夫希兹-吉尔伯特方程对磁化响应于转矩的旋转,引入:

d M d t = γ M × H e f f λ M × ( M × H e f f ) {\displaystyle {\frac {d\mathbf {M} }{dt}}=-\gamma \mathbf {M} \times \mathbf {H_{\mathrm {eff} }} -\lambda \mathbf {M} \times \left(\mathbf {M} \times \mathbf {H_{\mathrm {eff} }} \right)} 是孤子旋磁比,是现象阻尼参数,则:

其中,是一个无量纲常数,称为阻尼因子。有效场场Heff为外部场的一个组合时,退磁场(磁化磁场)的量子力学效应。解方程前提是包含用于退磁场的附加方程。

采用不可逆的统计力学法,可独立推导出朗道-利夫希兹方程。

1955年吉尔伯特由一个依赖于磁场的时间导数取代了朗道-利夫希兹的阻尼项:

d M d t = γ ( M × H e f f η M × d M d t ) {\displaystyle {\frac {d\mathbf {M} }{dt}}=-\gamma \left(\mathbf {M} \times \mathbf {H} _{\mathrm {eff} }-\eta \mathbf {M} \times {\frac {d\mathbf {M} }{dt}}\right)} 是材料特性的阻尼参数。它可以转化为朗道-利夫希兹方程:

d M d t = γ M × H e f f λ M × ( M × H e f f ) {\displaystyle {\frac {d\mathbf {M} }{dt}}=-\gamma '\mathbf {M} \times \mathbf {H} _{\mathrm {eff} }-\lambda \mathbf {M} \times (\mathbf {M} \times \mathbf {H} _{\mathrm {eff} })} 依赖于阻尼项。这更好地代表现实中磁体影响时,阻尼较大。

该方程的基本思想就是,在规范场作用下,粒子的运动本身会产生电磁场,而这种电磁场可以自我驱动于每一个粒子

协变情况下, D t = t + i v {\displaystyle D_{t}=\partial _{t}+iv\cdot \nabla } , 这里的速度代表的是粒子运动的群速度。

平均场引发的自我驱动往往具有自持效果,这种效果的体现就是一群粒子可以形成稳定的孤子波。这就是磁性孤子。

相关

  • 价值论价值论 (来自古希腊语 ἀξίᾱ, axiā, "价值"; 以及-λόγος, 理性) 价值观的哲学研究。价值论 同时可以用在伦理学以及美学上—亦即高度重视价值观念的哲学领域—或者
  • 库尔特·哥德尔库尔特·弗雷德里希·哥德尔(德语:Kurt Friedrich Gödel,1906年4月28日-1978年1月14日),出生于奥匈帝国的数学家、逻辑学家和哲学家,维也纳学派(维也纳小组)的成员。哥德尔是二十世
  • 凹透镜本条目介绍的是光学设备,其他领域的透镜不在此处讨论。透镜是一种将光线聚合或分散的设备,通常是由一片玻璃构成,但用于其他电磁辐射的类似设备通常也称为透镜,例如:由石蜡制成的
  • Henrietta Leavitt亨丽爱塔·斯万·勒维特(英语:Henrietta Swan Leavitt,1868年7月4日-1921年12月12日)是一位美国天文学家,毕业于拉德克利夫学院。1893年起,她在哈佛大学天文台担任计算员,负责监视感
  • 普利昂朊毒体(英语:prion,发音为/ˈpriː.ɒn/;又译为普利昂、蛋白质侵染因子、毒朊、感染性蛋白质、普恩蛋白等)是一种具感染性的致病因子,能引发人类及哺乳动物的传染性海绵状脑病。朊
  • 立方仄米体积(英语:Volume)是物件占有多少空间的量。体积的国际单位制是立方米。一件固体物件的体积是一个数值用以形容该物件在空间所占有的空间。一维空间物件(如线)及二维空间物件(如正
  • 太浩国家森林太浩国家森林(英语:Tahoe National Forest)是一座美国国家森林,位于加利福尼亚州,处太浩湖之西北。其境内有高8,587-英尺(2,617-米)的塞拉巴特斯(Sierra Buttes)山峰,在塞拉市(英语:Sier
  • 万千星辉颁奖典礼最佳男配角万千星辉颁奖典礼最佳男配角每年由电视广播有限公司颁发,给予年度该公司最出色的电视剧中次要男演员之最高荣誉,得奖者被认为是具备相当演技实力的非关键演员,在一些电视剧中给
  • 邓玉函约翰·施雷克(Johann Schreck,1576年-1630年5月11日),汉名邓玉函,天主教耶稣会德国传教士。生于康斯坦茨。1618年4月16日,随金尼阁在里斯本启程赴东方。1619年7月22日抵达澳门。同
  • 比例尺 (地图)比例尺(英语:Scale)是指地图上距离和实际距离之间的比例。例如当实际距离为1000米,而在地图上的距离为10厘米时,则称这一地区的比例尺是1:10,000。一般将比例尺为1:1至1:600,000