比例

✍ dations ◷ 2025-08-16 07:01:20 #比例
在数学中,比例是两个非零数量 y {displaystyle y} 与 x {displaystyle x} 之间的比较关系,记为 y : x ( x , y ∈ R ) {displaystyle y:x;(x,yin mathbb {R} )} ,在计算时则更常写为 y x {displaystyle {frac {y}{x}}} 或 y / x {displaystyle y/x} 。若两个变量的关系符合其中一个量是另一个量乘以一个常数( y = k x {displaystyle y=kx} ),或等价地表达为两变数之比率为一个常数(称为比值, y / x = k {displaystyle y/x=k} ),则称两者是成比例的。如果 y {displaystyle y} 与 x {displaystyle x} 是可通约的,亦即它们之间存在一个公测量(common measure) m ( m ∈ R ) {displaystyle m;(min mathbb {R} )} 使得 y = m p , x = m q ( p , q ∈ Z ) {displaystyle y=mp,x=mq;(p,qin mathbb {Z} )} , y : x {displaystyle y:x} 就相等于两个整数的比: y : x = m p : m q = p : q {displaystyle y:x=mp:mq=p:q} ,那么 y : x {displaystyle y:x} 就称为可通约比(commensurable ratio), p q {displaystyle {frac {p}{q}}} 称为一个分数,其比值称为有理数;否则,如果不存在一个公测量, y : x {displaystyle y:x} 就称为不可通约比(incommensurable ratio),其比值称为无理数,亦即无法表达为分数的数。两个比例之间也可以互相比较。如果两个比例相等,亦即,它们的比值相同,这个相等关系称为一个等比关系,例如, y : x = u : o {displaystyle y:x=u:o} 是一个等比关系,其中 x u = y o {displaystyle xu=yo} 。特别是,如果第二项等于第三项,例如 y : x = x : z {displaystyle y:x=x:z} ,那么 x 2 = y z → x = y z {displaystyle x^{2}=yzrightarrow x={sqrt {yz}}} , x {displaystyle x} 称为 y {displaystyle y} 与 z {displaystyle z} 的几何平均数(geometric mean)。若存在一非零常数 k {displaystyle k} 使则称变量 y {displaystyle y} 与变量 x {displaystyle x} 成比例(有时也称为成正比)。当 x {displaystyle x} 和 y {displaystyle y} 成正比关系,表示当 x {displaystyle x} 变为原来 k {displaystyle k} 倍时, y {displaystyle y} 也会变为原来的 k {displaystyle k} 倍。该关系通常用 ∝ {displaystyle propto } (U+221D)表示为:并称该常数比率为比例常数或比例关系中的比例恒量。在日常生活中,正比这个词的使用并不严格局限于线性函数,一般来说,一个变量随着另一个变量的增大/缩小而相应地增大/缩小,近似地满足线性关系的时候,我们可以说这两个变量成正比。现代数学对于比例的用法并没有严格限制,例如,在一个班级里面,我们可以说:“男孩与女孩的比例是2比1”。然而,在古希腊数学中,由于比例是用来表示倍数关系,所以必须是相同种类的数量才能构成比例,例如,欧几里得在《几何原本》第五册中如此定义比例: .mw-parser-output .templatequote{margin-top:0;overflow:hidden}.mw-parser-output .templatequote .templatequotecite{line-height:1em;text-align:left;padding-left:2em;margin-top:0}.mw-parser-output .templatequote .templatequotecite cite{font-size:small}λόγος ἐστὶ δύο μεγεθῶν ὁμογενῶν ἡ κατὰ πηλικότητά ποια σχέσις.A ratio is a sort of relation in respect of size between two magnitudes of the same kind.比例是两个同类数量之间的大小关系。阿基米德使用这个定义来叙述均匀运动(uniform motion)的等比关系:在一个均匀运动中,两段距离的比例相等于它们所需时间的比例。阿基米德所要描述的,就是匀速运动,但是古希腊数学并不接受距离与时间的比例(亦即速率),因为它们是不一样的数量,所以他没有办法直接说:“均匀运动就是每一点上的速率皆相等”。当采用古希腊的比例论来叙述时,必须取两段距离 L 1 {displaystyle L_{1}} 与 L 2 {displaystyle L_{2}} 以及所需时间 T 1 {displaystyle T_{1}} 与 T 2 {displaystyle T_{2}} ,均匀运动(匀速运动)就是 L 1 : L 2 = T 1 : T 2 {displaystyle L_{1}:L_{2}=T_{1}:T_{2}} 。因为等价于因此可推出,若 y {displaystyle y} 与 x {displaystyle x} 之间存在正比关系,则 x {displaystyle x} 与 y {displaystyle y} 之间存在正比关系。y {displaystyle y} 与 x {displaystyle x} 的正比关系也可以被解读为一条在二维直角坐标系穿过原点的直线,其斜率为比例常数。比例关系中,位于两端的两数之积等于位于中间的两数之积:在上面定义中,我们说有时称两个成比例的变量成正比例,这是为了和反比例关系相对应。如果两变量中,一个变量和另外一个变量的倒数成正比,或等价地,若这两变量的乘积是一个常数,则称这两个变量是成反比例(或相反地变化)的。从而可继续推出,若存在一非零常数 k {displaystyle k} 使则变量 y {displaystyle y} 和变量 x {displaystyle x} 成反比。反比例关系的概念基本上说明的是这样一种关系,即当一个变量的值变大时,另一变量的值相应变小,而两者之积总是保持为一常数(即比例常数)。举例来说,运动中的车辆走完一段路程所花费的时间是和这辆车运动的速度成反比的;在地上挖个坑所花的时间也(大致地)和雇来挖坑的人数成反比的。在笛卡尔坐标平面上,两个具有反比例关系的变量的图形是一对双曲线。该图线上的每一点的 X 和 Y 坐标值之积总是等于比例常数 k {displaystyle k} 。由于 k {displaystyle k} 非零,所以图线不会与坐标轴相交若变量 y {displaystyle y} 与变量 x {displaystyle x} 的指数函数成正比,即:若存在非零常数 k {displaystyle k} 使则称 y {displaystyle y} 与 x {displaystyle x} 成指数比例。类似地,若变量 y {displaystyle y} 与变量 x {displaystyle x} 的对数函数成正比,即:若存在非零常数 k {displaystyle k} 使则称 y {displaystyle y} 与 x {displaystyle x} 成对数比例。用实验方法确定两个物理量是否具有正比关系,可采用这样的办法,即进行多次测量并在笛卡尔坐标系中将这些测量结果用多个点来表示,而绘制出这些点的分布图形;如果所有点完全(或接近)地落在一条穿过原点 ( 0 , 0 ) {displaystyle (0,0)} 的直线上,则这两个变量(很有可能)具有比例常数等于该直线斜率的正比关系。

相关

  • 肝硬化肝硬化指的是肝脏因长期受到伤害,导致最后无法正常运作。肝硬化是漫长的过程,在早期通常没有症状,随着疾病的发展,患者可能开始感到容易疲倦、虚弱、下肢水肿、皮肤泛黄、容易瘀
  • 壶菌壶菌(英语:Chytridiomycota)是一类具有动孢子(英语:zoospore)的真菌。其名称来源于希腊文χυτρίδιον(chytridion),意思是“小壶”,因其产生动孢子的结构动孢子囊而得名。壶菌
  • 猞猁猞猁属(学名:Lynx),短尾胸腹白毛耳尖黑毛,也称为山猫、大山猫、林㹭,是哺乳纲食肉目猫科的一属,主要分为四种:
  • 奥斯曼土耳其人奥斯曼土耳其人是奥斯曼帝国穆斯林米利特的分支,以往主导著奥斯曼帝国的统治阶层。与奥斯曼人早期历史的可靠资料缺乏。据一些资料所述,突厥乌古斯人的卡耶部落首领埃尔图鲁尔
  • Proceedings of the National Academy of Sciences《美国国家科学院院刊》(英语:Proceedings of the National Academy of Sciences of the United States of America,通常简称为 PNAS;PNAS USA)是美国国家科学院的官方学术周刊。
  • 哥德尔库尔特·弗雷德里希·哥德尔(德语:Kurt Friedrich Gödel,1906年4月28日-1978年1月14日),出生于奥匈帝国的数学家、逻辑学家和哲学家,维也纳学派(维也纳小组)的成员。哥德尔是二十世
  • 蛛形纲见内文蛛形纲(学名:Arachnida)又名蜘蛛纲,是节肢动物下的一个纲,有65,000~73,000左右的物种,包括了蜘蛛、蝎子、壁虱、螨等。蜘蛛、蝎子等常被大众误解为昆虫,虽然同属节肢动物门,可
  • 高弗雷·豪斯费尔德高弗雷·纽博尔德·豪斯费尔德爵士,CBE,FRS(英语:Sir Godfrey Newbold Hounsfield,1919年8月28日-2004年8月12日),英国电机工程师 ,因为研究X射线断层成像与相关技术与发明,而与阿兰·
  • 哲学心理学异常心理学 行为遗传学 生物心理学 心理药物学 认知心理学 比较心理学 跨文化心理学 文化心理学 差异心理学(英语:Differential psychology) 发展心理学 演化心理学 实验心理学
  • 米氏方程米-门二氏动力学(英语:Michaelis-Menten kinetics),又称米氏动力学,是由雷昂诺·米凯利斯(英语:Leonor Michaelis)和贸特·门顿(英语:Maud Menten)在1913年提出,它在酶动力学中是一个极