首页 >
比例
✍ dations ◷ 2025-04-02 16:39:29 #比例
在数学中,比例是两个非零数量
y
{displaystyle y}
与
x
{displaystyle x}
之间的比较关系,记为
y
:
x
(
x
,
y
∈
R
)
{displaystyle y:x;(x,yin mathbb {R} )}
,在计算时则更常写为
y
x
{displaystyle {frac {y}{x}}}
或
y
/
x
{displaystyle y/x}
。若两个变量的关系符合其中一个量是另一个量乘以一个常数(
y
=
k
x
{displaystyle y=kx}
),或等价地表达为两变数之比率为一个常数(称为比值,
y
/
x
=
k
{displaystyle y/x=k}
),则称两者是成比例的。如果
y
{displaystyle y}
与
x
{displaystyle x}
是可通约的,亦即它们之间存在一个公测量(common measure)
m
(
m
∈
R
)
{displaystyle m;(min mathbb {R} )}
使得
y
=
m
p
,
x
=
m
q
(
p
,
q
∈
Z
)
{displaystyle y=mp,x=mq;(p,qin mathbb {Z} )}
,
y
:
x
{displaystyle y:x}
就相等于两个整数的比:
y
:
x
=
m
p
:
m
q
=
p
:
q
{displaystyle y:x=mp:mq=p:q}
,那么
y
:
x
{displaystyle y:x}
就称为可通约比(commensurable ratio),
p
q
{displaystyle {frac {p}{q}}}
称为一个分数,其比值称为有理数;否则,如果不存在一个公测量,
y
:
x
{displaystyle y:x}
就称为不可通约比(incommensurable ratio),其比值称为无理数,亦即无法表达为分数的数。两个比例之间也可以互相比较。如果两个比例相等,亦即,它们的比值相同,这个相等关系称为一个等比关系,例如,
y
:
x
=
u
:
o
{displaystyle y:x=u:o}
是一个等比关系,其中
x
u
=
y
o
{displaystyle xu=yo}
。特别是,如果第二项等于第三项,例如
y
:
x
=
x
:
z
{displaystyle y:x=x:z}
,那么
x
2
=
y
z
→
x
=
y
z
{displaystyle x^{2}=yzrightarrow x={sqrt {yz}}}
,
x
{displaystyle x}
称为
y
{displaystyle y}
与
z
{displaystyle z}
的几何平均数(geometric mean)。若存在一非零常数
k
{displaystyle k}
使则称变量
y
{displaystyle y}
与变量
x
{displaystyle x}
成比例(有时也称为成正比)。当
x
{displaystyle x}
和
y
{displaystyle y}
成正比关系,表示当
x
{displaystyle x}
变为原来
k
{displaystyle k}
倍时,
y
{displaystyle y}
也会变为原来的
k
{displaystyle k}
倍。该关系通常用
∝
{displaystyle propto }
(U+221D)表示为:并称该常数比率为比例常数或比例关系中的比例恒量。在日常生活中,正比这个词的使用并不严格局限于线性函数,一般来说,一个变量随着另一个变量的增大/缩小而相应地增大/缩小,近似地满足线性关系的时候,我们可以说这两个变量成正比。现代数学对于比例的用法并没有严格限制,例如,在一个班级里面,我们可以说:“男孩与女孩的比例是2比1”。然而,在古希腊数学中,由于比例是用来表示倍数关系,所以必须是相同种类的数量才能构成比例,例如,欧几里得在《几何原本》第五册中如此定义比例:
.mw-parser-output .templatequote{margin-top:0;overflow:hidden}.mw-parser-output .templatequote .templatequotecite{line-height:1em;text-align:left;padding-left:2em;margin-top:0}.mw-parser-output .templatequote .templatequotecite cite{font-size:small}λόγος ἐστὶ δύο μεγεθῶν ὁμογενῶν ἡ κατὰ πηλικότητά ποια σχέσις.A ratio is a sort of relation in respect of size between two magnitudes of the same kind.比例是两个同类数量之间的大小关系。阿基米德使用这个定义来叙述均匀运动(uniform motion)的等比关系:在一个均匀运动中,两段距离的比例相等于它们所需时间的比例。阿基米德所要描述的,就是匀速运动,但是古希腊数学并不接受距离与时间的比例(亦即速率),因为它们是不一样的数量,所以他没有办法直接说:“均匀运动就是每一点上的速率皆相等”。当采用古希腊的比例论来叙述时,必须取两段距离
L
1
{displaystyle L_{1}}
与
L
2
{displaystyle L_{2}}
以及所需时间
T
1
{displaystyle T_{1}}
与
T
2
{displaystyle T_{2}}
,均匀运动(匀速运动)就是
L
1
:
L
2
=
T
1
:
T
2
{displaystyle L_{1}:L_{2}=T_{1}:T_{2}}
。因为等价于因此可推出,若
y
{displaystyle y}
与
x
{displaystyle x}
之间存在正比关系,则
x
{displaystyle x}
与
y
{displaystyle y}
之间存在正比关系。y
{displaystyle y}
与
x
{displaystyle x}
的正比关系也可以被解读为一条在二维直角坐标系穿过原点的直线,其斜率为比例常数。比例关系中,位于两端的两数之积等于位于中间的两数之积:在上面定义中,我们说有时称两个成比例的变量成正比例,这是为了和反比例关系相对应。如果两变量中,一个变量和另外一个变量的倒数成正比,或等价地,若这两变量的乘积是一个常数,则称这两个变量是成反比例(或相反地变化)的。从而可继续推出,若存在一非零常数
k
{displaystyle k}
使则变量
y
{displaystyle y}
和变量
x
{displaystyle x}
成反比。反比例关系的概念基本上说明的是这样一种关系,即当一个变量的值变大时,另一变量的值相应变小,而两者之积总是保持为一常数(即比例常数)。举例来说,运动中的车辆走完一段路程所花费的时间是和这辆车运动的速度成反比的;在地上挖个坑所花的时间也(大致地)和雇来挖坑的人数成反比的。在笛卡尔坐标平面上,两个具有反比例关系的变量的图形是一对双曲线。该图线上的每一点的 X 和 Y 坐标值之积总是等于比例常数
k
{displaystyle k}
。由于
k
{displaystyle k}
非零,所以图线不会与坐标轴相交若变量
y
{displaystyle y}
与变量
x
{displaystyle x}
的指数函数成正比,即:若存在非零常数
k
{displaystyle k}
使则称
y
{displaystyle y}
与
x
{displaystyle x}
成指数比例。类似地,若变量
y
{displaystyle y}
与变量
x
{displaystyle x}
的对数函数成正比,即:若存在非零常数
k
{displaystyle k}
使则称
y
{displaystyle y}
与
x
{displaystyle x}
成对数比例。用实验方法确定两个物理量是否具有正比关系,可采用这样的办法,即进行多次测量并在笛卡尔坐标系中将这些测量结果用多个点来表示,而绘制出这些点的分布图形;如果所有点完全(或接近)地落在一条穿过原点
(
0
,
0
)
{displaystyle (0,0)}
的直线上,则这两个变量(很有可能)具有比例常数等于该直线斜率的正比关系。
相关
- 胞器细胞器(英语:organelle,或称胞器)是细胞的一部分, 是细胞中通过生物膜与细胞中其他部分分隔开来的、功能上独立的亚细胞结构,与细胞质基质和细胞骨架统称为“细胞质”。细胞器可依
- 第二代头孢菌素(法语:Cephalosporine、英语:Cephalosporin),又名先锋霉素,是一系列属于β内酰胺类的抗生素。与头霉素一并细分为头孢烯。头孢菌素化合物最初是于1948年,由意大利科学家Giu
- 接合孢子接合孢子是接合菌的有性孢子,由菌丝长出形态相同或略有不同地配子囊接合而成。接合孢子是由菌丝生出的结构基本相似,形态相同或略有不同的两个配子囊接合而成。首先,两个化学
- 片利共生偏利共生(英语:Commensalism,又称为偏利共栖现象)是两种生物间共生关系的一种。是指在生物界中,某两物种间的生态关系,其中一种的生物会因这个关系而获得生存上的利益,但是,另一方的
- 蓄电池br /smallspan style=font-weight:normal;/span蓄电池(英语:Storage battery),俗称电瓶,又称可充电电池(英语:Rechargeable battery),泛指所有在电量用到一定程度之后可以被再次充电、反复使用的化学能电池的总称。之所以可以充电
- 硝基硝基化合物是含有一个或若干个硝基官能团(-NO2)的有机化合物。硝基化合物通常易爆,尤其是当分子内含有超过一个硝基且不纯时。芳香硝基化合物通常通过硝化反应合成,即混合硝酸
- 弥赛亚弥赛亚(天主教汉译作默西亚;希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Ara
- 隶变陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧ 小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧ 书法 ‧ 飞白书笔画 ‧
- 十二铜表法古罗马政府与政治 系列条目罗马共和国前509年–前27年 罗马帝国前27年–1453年元首制西罗马帝国君主制东罗马帝国王政时代宪政(英语:Constitution of the Roman Kingdom) 共和
- 紫菜紫菜,是海中互生藻类生物的统称。紫菜一般生活在距离潮间带数十米的海底,外表通常呈绿色,偶尔呈红色。泰国有很长的海岸线,有非常适合海苔的生长环境和优质的海苔生长水域。大型