米氏方程

✍ dations ◷ 2025-09-11 08:00:19 #米氏方程
米-门二氏动力学(英语:Michaelis-Menten kinetics),又称米氏动力学,是由雷昂诺·米凯利斯(英语:Leonor Michaelis)和贸特·门顿(英语:Maud Menten)在1913年提出,它在酶动力学中是一个极为重要的方程,可以描述多种非变异构酶动力学现象,其表示式为: V 0 = V m a x [ S ] K M + [ S ] {displaystyle V_{0}=V_{max}{frac {}{K_{M}+}}}以下米氏方程的推导是由Briggs和Haldane在1925年提出的:假设有下图所示的酶促反应E + S k 1 ⟶ ⟵ k − 1 E S k 2 ⟶   E + P {displaystyle E+S{begin{matrix}k_{1}\longrightarrow \longleftarrow \k_{-1}end{matrix}}ES{begin{matrix}k_{2}\longrightarrow \ end{matrix}}E+P}假设此酶促反应不可逆,反应产物不和酶结合;k2<k-1, E+S⇌ES 之间的平衡迅速建立达到平衡态(Steady-state),也就是底物和酶的化合物(ES)的浓度不变;建立平衡态所消耗的底物的量很小,可以忽略。这样有以下关系:d [ E S ] d t = k 1 [ E ] [ S ] − k − 1 [ E S ] − k 2 [ E S ] = 0 {displaystyle {frac {d}{dt}}=k_{1}-k_{-1}-k_{2}=0}[ E S ] = k 1 [ E ] [ S ] k − 1 + k 2 {displaystyle ={frac {k_{1}}{k_{-1}+k_{2}}}}米氏常数Km的定义为:K M = k − 1 + k 2 k 1 {displaystyle K_{M}={frac {k_{-1}+k_{2}}{k_{1}}}}原式可简化为:[ E S ] = [ E ] [ S ] K M {displaystyle ={frac {}{K_{M}}}} (1)总的酶的浓度等于自由酶与酶-底物化合物的和,则有以下关系:[ E 0 ] = [ E ] + [ E S ] {displaystyle =+}[ E ] = [ E 0 ] − [ E S ] {displaystyle =-} (2)将(2)式代入(1):[ E S ] = ( [ E 0 ] − [ E S ] ) [ S ] K M {displaystyle ={frac {(-)}{K_{M}}}}整理得:[ E S ] K M [ S ] = [ E 0 ] − [ E S ] {displaystyle {frac {K_{M}}{}}=-}[ E S ] ( 1 + K M [ S ] ) = [ E 0 ] {displaystyle (1+{frac {K_{M}}{}})=}[ E S ] = [ E 0 ] 1 1 + K M [ S ] {displaystyle ={frac {1}{1+{frac {K_{M}}{}}}}} (3)下式可以描述该酶促反应的速率:d [ P ] d t = k 2 [ E S ] {displaystyle {frac {d}{dt}}=k_{2}} (4)将 (3) 代入 (4),分号上下同时乘以得:d [ P ] d t = k 2 [ E 0 ] [ S ] K M + [ S ] = V m a x [ S ] K M + [ S ] {displaystyle {frac {d}{dt}}=k_{2}{frac {}{K_{M}+}}=V_{max}{frac {}{K_{M}+}}} 或 V 0 = V m a x [ S ] K M + [ S ] {displaystyle V_{0}=V_{max}{frac {}{K_{M}+}}}该式可通过非线性作图或Lineweaver-Burk(双倒数作图),Eadie-Hofstee等作图法变换为线性图进行分析。在推导过程中几点需要注意:要测得方程中的KM和Vmax,需要在酶的量恒定并已知的情况下,在不同的底物浓度下测得反应的初速度V0,用非线性作图或线性作图的方法求得KM和Vmax。KM反映了底物和酶结合的紧密程度,Vmax反映了酶催化反应的速度。

相关

  • 诊断方法诊断,在医学意义上指对人体生理或精神疾病及其病理原因所作的判断。作出这种判断一般需要的的资料有:医生等专业人员根据症状、病史(包括家庭病史)、病历及医疗检查结果等。其概
  • MCV平均红细胞体积(mean corpuscular volume、mean cell volume,简称MCV)是指人体单个红细胞的平均体积,通常是间接计算得到。平均红细胞体积 =
  • 放射药物放射药理学是关于研究和制备放射性药物的一门学科。在疾病的诊断与治疗当中,核医学领域将放射性药物作为示踪剂来使用。其中,许多放射性药物采用的都是锝(Tc-99m)。在Klaus Schw
  • 生物大分子生物大分子指的是作为生物体内主要活性成分的各种分子量达到上万或更多的有机分子。常见的生物大分子包括蛋白质、核酸 (DNA、RNA等)、糖类。这只是一个概念性定义,与生物大
  • 离子化合物离子化合物,是由阴离子(Anion,带负电)和阳离子(Cation,带正电)组成,以本质上是库仑力的离子键相结合的化合物。离子化合物通常熔点和沸点较高,熔融时或电离产生其组成离子的水溶液中
  • 唐家乡唐家乡可以指:
  • 冶金学冶金学(英语:metallurgy)属于材料科学,是研究从矿石中提取金属,并用各种加工方法制成具有一定性能的金属材料的学科。冶金学也研究金属、金属互化物或其混合物(称为合金)的物理及化
  • 活力论生命力论(英语:Vitalism,又译为生命主义、生气论、生机论、生机说、生命力)在人类历史上存在长久的历史,现代版本是19世纪初由瑞典化学家贝采利乌斯提出。一般认为“生命力”学说
  • 伦巴底语伦巴第语是一种语言,主要集中在北意大利之伦巴第、皮埃蒙特、南瑞士、提契诺州以及格劳宾登州。伦巴第语属于罗曼语族之高卢意大利语支。主要有分为两种方言,西伦巴第语及东伦
  • 隐秘部位隐秘部位、私密部位、私密地带、隐私部位、私处或下体(英语:intimate part,personal part,pubic area、private part或private zone;日语:プライベートゾーン),指人体出于礼仪、得体