米氏方程

✍ dations ◷ 2025-01-23 03:17:24 #米氏方程
米-门二氏动力学(英语:Michaelis-Menten kinetics),又称米氏动力学,是由雷昂诺·米凯利斯(英语:Leonor Michaelis)和贸特·门顿(英语:Maud Menten)在1913年提出,它在酶动力学中是一个极为重要的方程,可以描述多种非变异构酶动力学现象,其表示式为: V 0 = V m a x [ S ] K M + [ S ] {displaystyle V_{0}=V_{max}{frac {}{K_{M}+}}}以下米氏方程的推导是由Briggs和Haldane在1925年提出的:假设有下图所示的酶促反应E + S k 1 ⟶ ⟵ k − 1 E S k 2 ⟶   E + P {displaystyle E+S{begin{matrix}k_{1}\longrightarrow \longleftarrow \k_{-1}end{matrix}}ES{begin{matrix}k_{2}\longrightarrow \ end{matrix}}E+P}假设此酶促反应不可逆,反应产物不和酶结合;k2<k-1, E+S⇌ES 之间的平衡迅速建立达到平衡态(Steady-state),也就是底物和酶的化合物(ES)的浓度不变;建立平衡态所消耗的底物的量很小,可以忽略。这样有以下关系:d [ E S ] d t = k 1 [ E ] [ S ] − k − 1 [ E S ] − k 2 [ E S ] = 0 {displaystyle {frac {d}{dt}}=k_{1}-k_{-1}-k_{2}=0}[ E S ] = k 1 [ E ] [ S ] k − 1 + k 2 {displaystyle ={frac {k_{1}}{k_{-1}+k_{2}}}}米氏常数Km的定义为:K M = k − 1 + k 2 k 1 {displaystyle K_{M}={frac {k_{-1}+k_{2}}{k_{1}}}}原式可简化为:[ E S ] = [ E ] [ S ] K M {displaystyle ={frac {}{K_{M}}}} (1)总的酶的浓度等于自由酶与酶-底物化合物的和,则有以下关系:[ E 0 ] = [ E ] + [ E S ] {displaystyle =+}[ E ] = [ E 0 ] − [ E S ] {displaystyle =-} (2)将(2)式代入(1):[ E S ] = ( [ E 0 ] − [ E S ] ) [ S ] K M {displaystyle ={frac {(-)}{K_{M}}}}整理得:[ E S ] K M [ S ] = [ E 0 ] − [ E S ] {displaystyle {frac {K_{M}}{}}=-}[ E S ] ( 1 + K M [ S ] ) = [ E 0 ] {displaystyle (1+{frac {K_{M}}{}})=}[ E S ] = [ E 0 ] 1 1 + K M [ S ] {displaystyle ={frac {1}{1+{frac {K_{M}}{}}}}} (3)下式可以描述该酶促反应的速率:d [ P ] d t = k 2 [ E S ] {displaystyle {frac {d}{dt}}=k_{2}} (4)将 (3) 代入 (4),分号上下同时乘以得:d [ P ] d t = k 2 [ E 0 ] [ S ] K M + [ S ] = V m a x [ S ] K M + [ S ] {displaystyle {frac {d}{dt}}=k_{2}{frac {}{K_{M}+}}=V_{max}{frac {}{K_{M}+}}} 或 V 0 = V m a x [ S ] K M + [ S ] {displaystyle V_{0}=V_{max}{frac {}{K_{M}+}}}该式可通过非线性作图或Lineweaver-Burk(双倒数作图),Eadie-Hofstee等作图法变换为线性图进行分析。在推导过程中几点需要注意:要测得方程中的KM和Vmax,需要在酶的量恒定并已知的情况下,在不同的底物浓度下测得反应的初速度V0,用非线性作图或线性作图的方法求得KM和Vmax。KM反映了底物和酶结合的紧密程度,Vmax反映了酶催化反应的速度。

相关

  • 疝气疝(Hernia),俗称疝气,其最初的意义是“腹痛”,但后世多特指“少腹坠痛”的狐疝,相当于现代医学的“腹股沟疝”。医学上的疝气指的是器官,例如肠子,经由腔室的孔道离开原先的位置。有
  • 性腺功能低下症性腺功能低下症,又称性腺机能减退,是指生殖系统的缺陷,导致生殖腺(卵巢或睾丸)的缺乏功能。生殖腺有着两种功能,就是分泌激素(睾酮、雌二醇、抗苗勒氏管激素、黄体素、抑制素B)、激
  • 消化不良消化不良(Dyspepsia或Indigestion)是一种临床症候群,是由胃动力障碍所引起的疾病,也包括胃蠕动不好的胃轻瘫和食道反流病,常见表现为上腹、胸部疼痛或肠胃不适,例如上腹痛、饱胀、
  • 自然选择自然选择(英语:natural selection,传统上也译为天择)指生物的遗传特征在生存竞争中,由于具有某种优势或某种劣势,因而在生存能力上产生差异,并进而导致繁殖能力的差异,使得这些特征
  • 邮政美国邮票是指在美国发行的邮票。美国邮票可以分为普通邮票、纪念邮票、航空邮票三种类型。美国的第一套普通邮票发行于1847年,当时面值为5美分和10美分。未使用的1847年普通
  • 政府CCP可以指:
  • 统计图形统计图形,又称为统计图、统计学图形、图解方法、图解技术、图解分析方法或图解分析技术,是指统计学领域当中用于可视化定量数据的信息图形。有时,人们也把统计图形与各种统计学
  • 对氨基水杨酸钠4-氨基水杨酸(英语:4-Aminosalicylic acid,又名对氨基水杨酸、氨基水杨酸或PAS)是一种用于治疗结核病的抗菌药。 它也被用于治疗炎症性肠病。 它通过抑制NF-κB及清除自由基而发
  • 婴儿按摩婴儿按摩(英语:Infant massage),是一种对婴儿进行按摩治疗(英语:massage therapy)的替代疗法。这种疗法已经在全球范围内实施,并且在西方国家越来越多地用于婴儿,支持其使用的科学证
  • 卡帕多细亚卡帕多细亚(/kæpəˈdoʊʃə/; also Capadocia; 土耳其语:Kapadokya, 希腊语:Καππαδοκία Kappadokía,辞源: 古波斯语:Katpatuka),又称为卡帕达奇亚,亚洲历史上的一个地