简谐运动

✍ dations ◷ 2025-01-23 09:14:03 #简谐运动
简谐运动,或称简谐振动、谐振、SHM(Simple Harmonic Motion),即是最基本也是最简单的一种机械振动。当某物体进行简谐运动时,物体所受的力跟位移成正比,并且力总是指向平衡位置。如果用F表示物体受到的回复力,用x表示物体对于平衡位置的位移,根据胡克定律,F和x成正比,它们之间的关系可用下式来表示:式中的k是回复力与位移成正比的比例系数;负号的意思是:回复力的方向总跟物体位移的方向相反。根据牛顿第二定律“ F = m a {displaystyle F=ma} ”当物体质量一定时,运动物体的加速度总跟物体所受合力的大小成正比,跟合力的方向相同,且系统的机械能守恒。对于一维的简谐振动,其动力学方程是二阶微分方程,可由牛顿第二运动定律得到回复力又可表示为 F = − k x {displaystyle F=-kx}所以有 x ¨ + k m x = 0 {displaystyle {ddot {x}}+{frac {k}{m}}x=0}求解上述方程,得到的的解含有正弦函数c 1 {displaystyle c_{1}} , c 2 {displaystyle c_{2}} 是由初始条件决定的常数。取平衡位置为原点,每项都有物理意义: A {displaystyle A} 是振幅,ω = 2πf是角频率,φ是相位。利用微积分,速度和加速度可以作为时间的函数得到加速度也可以通过位移的函数得到因为 ω = 2 π f {displaystyle omega =2pi f} ,又因为周期 T = 1 f {displaystyle T={frac {1}{f}}} ,所以: T = 2 π m k {displaystyle T=2pi {sqrt {frac {m}{k}}}} 。以上方程说明了简谐振动具有等时性,即一个做简谐振动的质点运动周期和振幅以及相位无关。:163将一个有孔小球体与一个弹簧连在一起,将一个极为光滑的水平杆穿入小球体,使球体可以在水平杆上左右滑动,而球体与水平杆的摩擦力小得可以忽略不计。将弹簧的一端固定住,弹簧的整体质量要比球体质量小得多,这样弹簧本身质量也可以忽略不计。这个系统便是一个弹簧振子。弹簧振子系统在平衡状态下,弹簧没有形变,振子(小球体)在平衡位置保持静止。若把振子拉过平衡位置,到达最大幅度,再松开,弹簧则会将振子向平衡位置收回。在收回的过程中,弹簧的势能转换为振子的动能,势能在降低的同时,动能在增加。当振子到达平衡位置时,振子所积累的动能又迫使振子越过平衡位置,继续向同样的方向移动。但因已越过弹簧振子系统的平衡位置,所以这时弹簧开始对振子向相反方向施加力。动能转作势能,动能降低,势能上升,直至到达离平衡位置最大幅度的距离。这时振子所有的动能被转化为势能,振子速度为零,停止运动。势能又迫使振子移回平衡位置,在移动过程中,势能转为动能,因而再次越过平衡位置,重复这个过程。在没有任何其他力影响的完美的条件下,这个弹簧振子系统会在两个最大幅度点间不停地做往返运动。弹簧振子的固有周期和固有频率与弹簧弹力系数和振子质量有关,与振幅大小无关。1.振幅振幅A代表质点偏离中心(平衡位置)的最大距离,它正比于 E {displaystyle {sqrt {E}}} 。,即它的平方正比于系统的机械能E2.角频率角频率: ω = 2 π f {displaystyle omega =2pi f} 。,频率f为周期T的倒数其中 ω = k m {displaystyle omega ={sqrt {frac {k}{m}}}} 。推导过程:下图为简谐运动的图像,表示的是振动物体的位移随时间变化的规律。是一条正弦或余弦曲线。这个运动是假设在没有能量损失引致阻尼的情况而发生。振幅描绘了振动的强弱,是标量,大小为最大位移的大小,质点在一次全振动过程中通过的路程等于4倍振幅。完成一次全振动的时间叫周期,单位时间内完成全振动的次数叫频率,周期和频率描绘了振动的快慢。应该说明:把质量为M的物体悬挂在劲度系数为k的弹簧的底端,则物体将进行简谐运动,其方程为:如果要计算它的周期,可以用以下的公式:总的能量是常数,由方程 E = k A 2 2 {displaystyle E={frac {kA^{2}}{2}}} 给出。等速率圆周运动的一维投影是简谐运动。如果物体以 ω {displaystyle omega } 的角速率沿着半径为 R {displaystyle R} 的圆移动,则它在x轴、y轴或任意一条直径上的投影会是简谐运动,其振幅为 R {displaystyle R} ,角速率为 ω {displaystyle omega } 。在偏角不太大的情况(一般认为小于5°)下,单摆的运动可以近似地视为简谐运动。如果单摆的长度为 ℓ {displaystyle ell } ,重力加速度为 g {displaystyle g} ,则周期为:这个公式仅当偏角很小时才成立,因为角加速度的表达式是与位置的正弦成正比的:其中I是转动惯量,在这种情况下 I = m ℓ 2 {displaystyle I=mell ^{2}} 。当 θ {displaystyle theta } 很小时, sin ⁡ ( θ ) ≈ θ {displaystyle sin(theta )approx theta } ,因此上式变为:这使得角加速度与 θ {displaystyle theta } 成正比,满足了简谐运动的定义。单摆的回复力是摆球的重力沿运动方向的分力。:165

相关

  • 肥大细胞肥大细胞(mast cell),发育源于骨髓CD34+前体细胞,是连接神经系统和免疫系统的桥梁,因为靠近周围神经末梢而很早就可以感受神经纤维的活动。肥大细胞激活后,可以释放炎症因子并募集
  • 脓疱病脓痂疹(Impetigo)是涉及表层皮肤的细菌感染,常见脸、手臂或是脚上出现淡黄色痂皮,发生在腹股沟和腋窝的大型水泡较少见。病灶可能有疼痛或是搔痒感,不常引起发烧。脓痂疹通常由金
  • 同工同酬同工同酬是指用人单位对于技术和劳动熟练程度相同的劳动者在从事同种工作时,不分性别、年龄、民族、区域等差别,只要提供相同的劳动量,就获得相同的劳动报酬。冰岛的男女公务员
  • 液滴模型液滴模型是一个关于原子核的模型。魏茨泽克公式将原子核的束缚能,表示成数个项之和。式中有部分常项由实验确定,变数则由理论推导出。一个原子核的束缚能可表示为:其中A为质量
  • 赫伯特·布朗赫伯特·查尔斯·布朗(英语:Herbert Charles Brown,1912年5月22日-2004年12月19日),乌克兰裔美籍犹太人化学家,1979年因将硼化合物用于有机合成之中而与格奥尔格·维蒂希分享诺贝尔
  • 于塞城堡于塞城堡(法语:château d'Ussé)是位于法国城市里尼于塞的一座法式城堡。为夏尔·佩罗的童话睡美人之城堡原型,且内有故事相关情节之场景与蜡像供游客参观。自1931年开始,于塞城
  • 空性空(梵语:śūnya)或空性(梵语:śūnyatā),是基本佛教术语,诸法的空性义为非真实性。空性是内在而言,外在的显示,即为空相。空是梵文śūnya的意译,音译舜若;其对应的名词形式梵文是śū
  • 丹人丹麦日耳曼人(Dane,Dani)是居住在斯堪的那维亚南部的北日耳曼部落,居住范围大概是今天的丹麦本部和瑞典南部斯堪尼地区,并存在于北欧铁器时代和维京时代。他们建立了后来的丹麦王
  • 特等站台湾铁路管理局车站等级为台湾铁路管理局(台铁)的车站级别。车站级别是由《交通部台湾铁路管理局所属分支机构组织通则》第二条明文规定的。台湾北部、中部、南部、东部地区优
  • 法属圭亚那2019冠状病毒病法属圭亚那疫情,介绍在2019新型冠状病毒疫情中,在法属圭亚那发生的情况。2020年3月4日,法属圭亚那宣布确诊5例新冠肺炎病例,其中一名为医护人员。3月15日,累计确诊