薄膜

✍ dations ◷ 2025-08-10 17:59:04 #薄膜
薄膜材料是指厚度介于单原子到几毫米间的薄金属或有机物层。电子半导体功能器件和光学镀膜是薄膜技术的主要应用。一个很为人们熟知的表面技术的应用是家用的镜子:为了形成反射表面在镜子的背面常常镀上一层金属,镀银操作广泛应用于镜子的制作,而低于一个纳米的极薄的镀层常常用来制作双面镜。当光学用薄膜材料(例如减反射膜消反射膜等)由数个不同厚度不同反射率的薄层复合而成时,他们的光学性能可以得到加强。相似结构的由不同金属薄层组成的周期性排列的薄膜会形成所谓的超晶格结果。在超晶格结构中,电子的运动被限制在二维空间中而不能在三维空间中运动于是产生了量子阱效应。薄膜技术有很广泛的应用。长久以来的研究已经将铁磁薄膜用于计算机存储设备,医药品,制造薄膜电池,染料敏化太阳能电池等。陶瓷薄膜也有很广泛的应用。由于陶瓷材料相对的高硬度使这类薄膜可以用于保护衬底免受腐蚀氧化以及磨损的危害。在刀具上陶瓷薄膜有着尤其显著的功用,使用陶瓷薄膜的刀具的使用寿命可以有效提升几个数量级。现阶段对于一种被称为多组分非晶重金属阳离子氧化物的新型的无机氧化物材料的研究正在进行,这种材料有望用于制造稳定,环保,低成本的透明晶体管。将金属薄层沉积到衬底或之前获得的薄层的技术称为表面沉积。这里的“薄”是一个相对的概念,但大多数的沉积技术都可以将薄层厚度控制在几个到几十纳米尺度的范围内,分子束外延技术可以得到单一原子层的结构。沉积技术在光学仪器(消反射膜,减反射膜,自清洁表面等)、电子技术(薄膜电阻,半导体,集成电路)、包装和现代艺术都有应用。在对薄膜厚度要求不高时,类似于沉积的技术常常被使用。例如:用电解法提纯铜,硅沉积,铀的提纯中都用到了类似于化学气相沉积的过程。沉积可大略分为 物理沉积(PVD)与 化学沉积(CVD)两种。在高真空的容器中、将欲沉积的材料加热直至汽化升华、并使此气体附着于放置在附近的基板表面上、形成一层薄膜。依沉积材料、基板的种类可分为:抵抗加热、电子束、高周波诱导、激光等加热方式。沉积材料有铝、锌、金、银、白金、镍等金属材料与可产生光学特性薄膜的材料,主要有使用SiO2、TiO2、ZrO2、MgF2等氧化物与氟化物。沉积除金属外,树脂和树脂与玻璃也可以使用、近年来连纸也变成可沉积。成膜时依基板与沉积材料可先使用RF等离子与离子枪照射来使沉积有更高的密着度。但是、被沉积物是树脂的时候这样做会造成反效果,因此在被沉积物的材质不明确下必须进行调查与事前的实验以免造成失败。RF等离子加工法为真空槽内加入氩与氧气,使已经离子化的被沉积物表面变质(RF离子化)。而离子枪加工法是在离子枪内部加入氩与氧气后在离子化的基板表面设置开有φ1mm左右小孔的画素电极,而后将离子枪往该处照射进行加工(IAD:Ion Assist Deposition)将容器真空化的作用为,沉积材料的分子在到达基板之前,避免与容器内残存的气体分子发生冲突,以及可以降低沉积材料的蒸发温度。一般需要10-3~10-4 Pa程度的真空度,要达成真空情况需使用真空泵。沉积时的量测膜厚有使用分光学反射与折射率来计算与以水晶震动分子的沉积材料的振动数变化来测量膜厚等方法。光学薄膜(眼镜与镜片的反射防止膜、特殊镜子等)、磁带(录音、录像带等)、构成显示器的电极・半导体膜・绝缘膜等(电浆电视与有机EL、液晶显示器)、手机、PDA的荧幕表面・装饰表面用的涂层、电子零件(电容、半导体集积回路等)、食品包装材料(装饼干糖果用的袋子有的沉积上一层铝膜)、以至于新颖材料与建材、各式各样范围广泛接可使用此加工法。电子显微镜的标本在制作时也使用此加工法。1857年Michael Faraday最早提出基本原理,而后、1930年代由于油扩散式真空帮浦实用化、沉积主要用于制作镜片反射防止膜。第二次世界大战时、其他的光学机器的需求提高、真空沉积也因此快速发展。化学沉积的原理是使流体在固体基体表面发生化学变化从而在原有表面上留下了一个固体层。由于流体是环绕于固态基体的,这使得沉积可以在所有表面都发生而几乎没有方向性。即由化学沉积获得的薄膜多是均匀无方向性的。化学沉积可以根据流体的状态进行进一步分类:薄膜的外延生长模式(Growth Mode)被分为三大类型:岛状生长模式、层状生长模式和岛状/层状生长模式(或斯特兰斯基-克拉斯坦诺夫生长)。其中,岛状生长模式又称Volmer-Weber模式、VM模式,得名于马克斯·福尔默(英语:Max Volmer)和A. 韦伯。层状生长模式又称Frank–van der Merwe模式、FM模式,得名于弗雷德里克·查尔斯·弗兰克(英语:Frederick Charles Frank)和Jan H van der Merwe(英语:Jan H van der Merwe)。岛状/层状生长模式又称斯特兰斯基-克拉斯坦诺夫模式、SK模式,得名于伊万·斯特兰斯基和 Lyubomir Krastanov。“薄膜在你身边”- 请和歪先生一起来了解薄膜在日常生活中有多么重要

相关

  • 嘴唇嘴唇是在人类及许多动物的脸上一个明显易见的器官,由上下两唇构成。两唇皆为凸出而柔软、并能由内部肌肉牵引而自由移动。唇是一个触觉器官,主要功能为帮助进食以及准确闭合发
  • 氢化可的松皮质醇(法语:cortisol),又译成可的松(音译),属于肾上腺分泌的肾上腺皮质激素之中的糖皮质激素,在应付压力中扮演重要角色,故又被称为“压力荷尔蒙”。皮质醇会提高血压、血糖水平和产
  • 色萨利色萨利大区(希腊语:Θεσσαλία,转写:Thessalia)位于希腊中部偏北,大区总面积14037平方公里,下辖四个州:卡尔季察州、拉里萨州、马格尼西亚州、特里卡拉州,大区首府设在拉里萨。
  • 阿哥拉阿哥拉(希腊语:Αγορά)原意为市集,泛指古希腊以及古罗马城市中经济、社交、文化的中心。阿哥拉通常地处城市中心,为露天广场。城市男性居民聚集在那里进行商业交易。除此以外
  • 一夫一妻单配偶制包含一夫一妻制,是指一种两两配对,每个个体只拥有单一配偶的关系,关系中两者一生中,或在生命中任何一个时间,只会与对方维持关系。单配偶制有别于多配偶制。单配偶制在动
  • 芬太尼芬太尼(英语:Fentanyl)是一种强效的、类阿片止痛剂,起效迅速而作用时间极短。它是脑中μ-阿片受体(英语:μ-opioid receptor)的强力激动剂。芬太尼比吗啡效力高50至100倍。但一些为
  • 国际单位制基本单位国际单位制基本单位是一系列由物理学家订定的基本标准单位。国际单位制共有7个基本单位。中华人民共和国用的单位名称依据《中华人民共和国法定计量单位》。中华民国用的单
  • 东亚传统东亚传统度量衡,通称度量衡,指源于中国,广泛应用于东亚各国的传统计量体系。日本多称为尺贯法,也称尺间法,其中“尺”为东亚通用的长度单位,“贯”在日本为质量单位,“间”为日本长
  • 时光旅行时间旅行或称时空旅行、时光旅行或穿越时空等,泛指人或物体由某一时间点移至另一时间点,类似在空间中的移动。所有事物都顺着时间一分一秒地自然前进,因此这里的时间旅行单指违
  • 隐形隐形能力,或称隐身能力,是指人能够将自己变成透明人的超能力,这是奇幻、科幻作品常见的题材之一。透明人的身体是看不见的,但透明人本身仍然可以看见其它的物体。有些透明人即使