首页 >
史匹曼等级相关系数
✍ dations ◷ 2025-05-16 21:01:48 #史匹曼等级相关系数
在 统计学中, 以查尔斯·斯皮尔曼命名的斯皮尔曼等级相关系数, 经常用希腊字母
ρ
{displaystyle rho }
(rho) 或者
r
s
{displaystyle r_{s}}
表示。 它是衡量两个变量的依赖性的 无母数 指标。 它利用单调方程评价两个统计变量的相关性。 如果数据中没有重复值, 并且当两个变量完全单调相关时,斯皮尔曼相关系数则为 +1 或 −1 。斯皮尔曼相关系数被定义成 等级变量之间的皮尔逊相关系数。 对于样本容量为 n的样本, n个 原始数据
X
i
,
Y
i
{displaystyle X_{i},Y_{i}}
被转换成等级数据
x
i
,
y
i
{displaystyle x_{i},y_{i}}
, 相关系数ρ为原始数据依据其在总体数据中平均的降序位置,被分配了一个相应的等级。 如下表所示:实际应用中, 变量间的连结是无关紧要的, 于是可以通过简单的步骤计算 ρ. 被观测的两个变量的等级的差值
d
i
=
x
i
−
y
i
{displaystyle d_{i}=x_{i}-y_{i}}
, 则 ρ 为度量一对观测数据的统计依赖性还有其他的几种度量指标: 在相关性和依赖性中有谈及。 其中最常用的是皮尔逊积矩相关系数。斯皮尔曼相关也可称为 "级别相关"; 也就是说, 被观测数据的 "等级" 被替换成 "级别"。 在连续的分布中, 被观测数据的级别,通常总是小于等级的一半。 然而,在这个案例中,级别和等级相关系数是一致的。 更一般的, 被观测数据的"级别" 与估计的总体样本的比值小于给定的值,即被观测值的一半。 也就是说,它是相应的等级系数的一种可能的解决方案。 虽然不常用, "级别相关" 还是仍然有被使用。斯皮尔曼相关系数表明 X (独立变量) 和 Y (依赖变量)的相关方向。 如果当X增加时, Y 趋向于增加, 斯皮尔曼相关系数则为正。 如果当X增加时, Y 趋向于减少, 斯皮尔曼相关系数则为负。 斯皮尔曼相关系数为零表明当X增加时 Y没有任何趋向性。 当X 和 Y越来越接近完全的单调相关时,斯皮尔曼相关系数会在绝对值上增加。 当 X 和 Y完全单调相关时, 斯皮尔曼相关系数的绝对值为 1。 完全的单调递增关系意味着任意两对数据 Xi, Yi 和 Xj, Yj, 有 Xi − Xj 和 Yi − Yj 总是同号。 完全的单调递减关系意味着任意两对数据 Xi, Yi 和 Xj, Yj, 有 Xi − Xj 和 Yi − Yj 总是异号。斯皮尔曼相关系数经常被称作 "非参数"的。 这里有两层含义。 首先, 当 X 和 Y的关系是由任意 单调函数描述的,则它们是完全皮尔逊相关的。与此相应的,皮尔逊相关系数只能给出由线性方程描述的 X 和 Y的相关性。其次,斯皮尔曼不需要先验知识(也就是说, 知道其参数)便可以准确获取X 和 Y的采样概率分布。在此例中,我们要使用下表所给出的原始数据计算一个人的 智商和其每周花在 电视上的小时数的相关性。首先,我们必须根据以下步骤计算出
d
i
2
{displaystyle d_{i}^{2}}
,如下表所示。根据
d
i
2
{displaystyle d_{i}^{2}}
计算
∑
d
i
2
=
194
{displaystyle sum d_{i}^{2}=194}
。 样本容量n为 10。 将这些值带入方程得 ρ = −0.175757575...这个值很大表明上述两个变量的关系很小。 原始数据不能用于此方程中,相应的, 应使用皮尔逊相关系数计算等级。一种确定被观测数据的 ρ 值是否显著不为零(r 总是有 1 ≥ r ≥ −1)的方法是计算它是否大于 r的概率,作为 原假设,并使用分层排列测试进行检验。 这种方法的优势之处在于它考虑了样本中的数据个数和在使用样本计算等级相关系数的风险。另外的一种方法是使用皮尔逊积矩中使用到的费雪变换。也就是,ρ 的置信区间和零检验可以通过费雪变换获得如果 F(r) 是 r 的Fisher变换, 则是 r的z-值 ,其中,r在统计依赖(ρ = 0).的零假设下 近似服从标准 正态分布。显著性为其在零假设下近似服从自由度为 n − 2的t分布 。 A justification for this result relies on a permutation argument.一般地,斯皮尔曼相关系数在有三个或更多条件的情况下是有用的。并且,它预测观测数据有一个特定的顺序。 例如,在同一任务中,一系列的个体会被尝试多次,并预测在多次尝试过程中,性能会得到提升。在这种情况下,对条件间趋势的显著性检验由E. B. Page 发展了,并通常称为给定序列下的 Page趋势测验。经典的 一致性分析 是一种统计方法,它给两个标称变量赋给一个分数。 通过这种方法, 两个变量间的皮尔逊相关系数被最大化了。有一种被称为级别相关分析的等价方法, 它最大化了斯皮尔曼相关系数或 肯德尔相关系数.
相关
- 直肠直肠,中国古称广肠,是人的消化系统的一部分,是肠的最后一部分,位于肛门的前面,其作用是积累粪便。当直肠中的粪便积累到一定程度后就会向大脑通知这个状态,以便排便。直肠约长15至
- 科特·考夫卡科特·考夫卡(Kurt Koffka,1886年3月18日-1941年11月22日)是一位德国格式塔心理学家。1886年3月18日,科特·考夫卡出生在德意志帝国首都柏林。身材瘦小,性格内向古板。1909年,他获
- 零次文献零次文献是一种特殊形式的信息源,主要包括两个方面的内容:零次文献一般是通过口头交谈、参观展览、参加报告会等途径获取,不仅在内容上有一定的价值,而且能弥补一般公开文献从信
- 氟利昂氟利昂(英语:Freon、/ˈfriː.ɒn/、FREE-on,亦称氯氟烃、氟氯烷)是由科慕公司(英语:Chemours)生产之数种卤碳(英语:Halocarbon)产品的注册商标。这些物质通常是稳定、不可燃、中度毒
- 毛利齐奥·波里尼毛利齐奥·波里尼(意大利语:Maurizio Pollini,1942年1月5日-),意大利钢琴家。毛利齐奥·波里尼生于米兰,其父为理性主义建筑学家基诺·波里尼(意大利语:Gino Pollini),曾先后师从卡洛·
- 核糖核酸核糖核酸(英语:Ribonucleic acid),简称RNA,是一类由核糖核苷酸通过3',5'-磷酸二酯键聚合而成的线性大分子。自然界中的RNA通常是单链的,且RNA中最基本的四种碱基为A(腺嘌呤)、U(尿嘧
- 亚砜亚砜是含有亚硫酰基(>S=O)官能团的一类有机化合物,可由硫醚氧化得到。常见的亚砜有氯化亚砜、二甲基亚砜、二苯基亚砜等。亚砜的通式为R-S=O-R',其中R和R'是有机基团。亚砜中的
- 娜嘉·奥尔曼娜嘉·奥尔曼(德语:Nadja Auermann,1971年3月19日-),德国超级名模和女演员,娜嘉以一对超修长美腿所著名。 1989年娜嘉在柏林的一家咖啡馆被发掘,就在同年与巴黎卡琳模
- 土地使用这个条目包括各国土地使用情况统计表格,排名依照各国的总耕地面积的多少来进行。总耕地面积包括了一年生作物面积和多年生作物面积。一年生作物面积是指用来种植小麦、玉米和
- 异常检测在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集(英语:dataset)中其他项目的项目、事件或观测值的识别。 通常异常项目会转变成银行欺诈(英语:bank fraud)、