史匹曼等级相关系数

✍ dations ◷ 2025-02-23 21:06:16 #史匹曼等级相关系数
在 统计学中, 以查尔斯·斯皮尔曼命名的斯皮尔曼等级相关系数, 经常用希腊字母 ρ {displaystyle rho } (rho) 或者 r s {displaystyle r_{s}} 表示。 它是衡量两个变量的依赖性的 无母数 指标。 它利用单调方程评价两个统计变量的相关性。 如果数据中没有重复值, 并且当两个变量完全单调相关时,斯皮尔曼相关系数则为 +1 或 −1 。斯皮尔曼相关系数被定义成 等级变量之间的皮尔逊相关系数。 对于样本容量为 n的样本, n个 原始数据 X i , Y i {displaystyle X_{i},Y_{i}} 被转换成等级数据 x i , y i {displaystyle x_{i},y_{i}} , 相关系数ρ为原始数据依据其在总体数据中平均的降序位置,被分配了一个相应的等级。 如下表所示:实际应用中, 变量间的连结是无关紧要的, 于是可以通过简单的步骤计算 ρ. 被观测的两个变量的等级的差值 d i = x i − y i {displaystyle d_{i}=x_{i}-y_{i}} , 则 ρ 为度量一对观测数据的统计依赖性还有其他的几种度量指标: 在相关性和依赖性中有谈及。 其中最常用的是皮尔逊积矩相关系数。斯皮尔曼相关也可称为 "级别相关"; 也就是说, 被观测数据的 "等级" 被替换成 "级别"。 在连续的分布中, 被观测数据的级别,通常总是小于等级的一半。 然而,在这个案例中,级别和等级相关系数是一致的。 更一般的, 被观测数据的"级别" 与估计的总体样本的比值小于给定的值,即被观测值的一半。 也就是说,它是相应的等级系数的一种可能的解决方案。 虽然不常用, "级别相关" 还是仍然有被使用。斯皮尔曼相关系数表明 X (独立变量) 和 Y (依赖变量)的相关方向。 如果当X增加时, Y 趋向于增加, 斯皮尔曼相关系数则为正。 如果当X增加时, Y 趋向于减少, 斯皮尔曼相关系数则为负。 斯皮尔曼相关系数为零表明当X增加时 Y没有任何趋向性。 当X 和 Y越来越接近完全的单调相关时,斯皮尔曼相关系数会在绝对值上增加。 当 X 和 Y完全单调相关时, 斯皮尔曼相关系数的绝对值为 1。 完全的单调递增关系意味着任意两对数据 Xi, Yi 和 Xj, Yj, 有 Xi − Xj 和 Yi − Yj 总是同号。 完全的单调递减关系意味着任意两对数据 Xi, Yi 和 Xj, Yj, 有 Xi − Xj 和 Yi − Yj 总是异号。斯皮尔曼相关系数经常被称作 "非参数"的。 这里有两层含义。 首先, 当 X 和 Y的关系是由任意 单调函数描述的,则它们是完全皮尔逊相关的。与此相应的,皮尔逊相关系数只能给出由线性方程描述的 X 和 Y的相关性。其次,斯皮尔曼不需要先验知识(也就是说, 知道其参数)便可以准确获取X 和 Y的采样概率分布。在此例中,我们要使用下表所给出的原始数据计算一个人的 智商和其每周花在 电视上的小时数的相关性。首先,我们必须根据以下步骤计算出 d i 2 {displaystyle d_{i}^{2}} ,如下表所示。根据 d i 2 {displaystyle d_{i}^{2}} 计算 ∑ d i 2 = 194 {displaystyle sum d_{i}^{2}=194} 。 样本容量n为 10。 将这些值带入方程得 ρ = −0.175757575...这个值很大表明上述两个变量的关系很小。 原始数据不能用于此方程中,相应的, 应使用皮尔逊相关系数计算等级。一种确定被观测数据的 ρ 值是否显著不为零(r 总是有 1 ≥ r ≥ −1)的方法是计算它是否大于 r的概率,作为 原假设,并使用分层排列测试进行检验。 这种方法的优势之处在于它考虑了样本中的数据个数和在使用样本计算等级相关系数的风险。另外的一种方法是使用皮尔逊积矩中使用到的费雪变换。也就是,ρ 的置信区间和零检验可以通过费雪变换获得如果 F(r) 是 r 的Fisher变换, 则是 r的z-值 ,其中,r在统计依赖(ρ = 0).的零假设下 近似服从标准 正态分布。显著性为其在零假设下近似服从自由度为 n − 2的t分布 。 A justification for this result relies on a permutation argument.一般地,斯皮尔曼相关系数在有三个或更多条件的情况下是有用的。并且,它预测观测数据有一个特定的顺序。 例如,在同一任务中,一系列的个体会被尝试多次,并预测在多次尝试过程中,性能会得到提升。在这种情况下,对条件间趋势的显著性检验由E. B. Page 发展了,并通常称为给定序列下的 Page趋势测验。经典的 一致性分析 是一种统计方法,它给两个标称变量赋给一个分数。 通过这种方法, 两个变量间的皮尔逊相关系数被最大化了。有一种被称为级别相关分析的等价方法, 它最大化了斯皮尔曼相关系数或 肯德尔相关系数.

相关

  • Sg5f14 6d4 7s2(预测)2, 8, 18, 32, 32, 12, 2 (预测)第一:757.4(估值) kJ·mol−1 第二:1732.9(估值) kJ·mol−1 第三:2483.5(估值) kJ·mol−1 (主条目:
  • 生殖器生殖器官是指在复杂生物体上任何与有性繁殖及组成生殖系统有关的组织(严格意义上,不一定都属于器官)。另外有相关的性器官一词,广义地说是指会带来性快感的器官。生殖腺是指产生
  • 高频高频(英语:High frequency)是指频带由3MHz到30MHz的无线电波。比HF频率略低的是中频(MF),比HF频率略高的是甚高頻(VHF)。HF多数是用作民用电台广播及短波广播。其对于电子仪器所发出
  • HOONO过氧亚硝酸(HNO3/HOONO/HONO2)是一种活性中间体,被广泛认为是自由基。它是过氧亚硝酸根(ONOO−)的共轭酸。它的pKa约为6.8。过氧亚硝酸可以均裂成二氧化氮和羟基自由基,这是一对笼
  • 六方最密堆积六方晶系(英语:hexagonal crystal system),有一个6次对称轴或者6次倒转轴,该轴是晶体的直立结晶轴C轴。另外三个水平结晶轴正端互成120°夹角。轴角α=β=90°,γ=120°,轴单位a=b
  • 企业WikiWiki引擎,或称为Wiki软件,是指用来架设Wiki的软件。广义来说,即是一种软件能作为网络共笔,供网民自行编辑,并最终集合成完整的数据库。狭义来说,即是能达成维基百科样式的软件。由
  • 法荷战争法荷战争,1672年-1678年,是一场欧洲战争,一方为路易十四法兰西王国、瑞典帝国、明斯特主教区、科隆主教区和英国,另一方为荷兰共和国,以及后来加入的神圣罗马帝国、勃兰登堡、西
  • 罗伯特·彭斯罗伯特·彭斯(英语:Robert Burns,1759年1月25日-1796年7月21日)是著名苏格兰诗人。罗伯特·彭斯从小熟悉苏格兰民谣和古老传说,并曾搜集、整理民歌,主要用苏格兰语写作,所作诗歌受民
  • 酰亚胺酰亚胺(Imide)中,氮原子与两个羰基相连,通式为R1-C(O)-N(R2)-C(O)-R3。它一般由氨或伯胺与羧酸或酸酐反应制备。常见的酰亚胺如邻苯二甲酰亚胺、琥珀酰亚胺、N-溴代琥珀酰亚胺、
  • 轧制冶金工程中,轧制,又称滚制(Rolling)或压延,指的是将金属锭通过一对滚轮,透过滚动来为之赋形的过程。如果压延时,金属的温度超过其再结晶温度,那么这个过程被称为“热轧”,否则称为“