史匹曼等级相关系数

✍ dations ◷ 2025-04-03 09:43:38 #史匹曼等级相关系数
在 统计学中, 以查尔斯·斯皮尔曼命名的斯皮尔曼等级相关系数, 经常用希腊字母 ρ {displaystyle rho } (rho) 或者 r s {displaystyle r_{s}} 表示。 它是衡量两个变量的依赖性的 无母数 指标。 它利用单调方程评价两个统计变量的相关性。 如果数据中没有重复值, 并且当两个变量完全单调相关时,斯皮尔曼相关系数则为 +1 或 −1 。斯皮尔曼相关系数被定义成 等级变量之间的皮尔逊相关系数。 对于样本容量为 n的样本, n个 原始数据 X i , Y i {displaystyle X_{i},Y_{i}} 被转换成等级数据 x i , y i {displaystyle x_{i},y_{i}} , 相关系数ρ为原始数据依据其在总体数据中平均的降序位置,被分配了一个相应的等级。 如下表所示:实际应用中, 变量间的连结是无关紧要的, 于是可以通过简单的步骤计算 ρ. 被观测的两个变量的等级的差值 d i = x i − y i {displaystyle d_{i}=x_{i}-y_{i}} , 则 ρ 为度量一对观测数据的统计依赖性还有其他的几种度量指标: 在相关性和依赖性中有谈及。 其中最常用的是皮尔逊积矩相关系数。斯皮尔曼相关也可称为 "级别相关"; 也就是说, 被观测数据的 "等级" 被替换成 "级别"。 在连续的分布中, 被观测数据的级别,通常总是小于等级的一半。 然而,在这个案例中,级别和等级相关系数是一致的。 更一般的, 被观测数据的"级别" 与估计的总体样本的比值小于给定的值,即被观测值的一半。 也就是说,它是相应的等级系数的一种可能的解决方案。 虽然不常用, "级别相关" 还是仍然有被使用。斯皮尔曼相关系数表明 X (独立变量) 和 Y (依赖变量)的相关方向。 如果当X增加时, Y 趋向于增加, 斯皮尔曼相关系数则为正。 如果当X增加时, Y 趋向于减少, 斯皮尔曼相关系数则为负。 斯皮尔曼相关系数为零表明当X增加时 Y没有任何趋向性。 当X 和 Y越来越接近完全的单调相关时,斯皮尔曼相关系数会在绝对值上增加。 当 X 和 Y完全单调相关时, 斯皮尔曼相关系数的绝对值为 1。 完全的单调递增关系意味着任意两对数据 Xi, Yi 和 Xj, Yj, 有 Xi − Xj 和 Yi − Yj 总是同号。 完全的单调递减关系意味着任意两对数据 Xi, Yi 和 Xj, Yj, 有 Xi − Xj 和 Yi − Yj 总是异号。斯皮尔曼相关系数经常被称作 "非参数"的。 这里有两层含义。 首先, 当 X 和 Y的关系是由任意 单调函数描述的,则它们是完全皮尔逊相关的。与此相应的,皮尔逊相关系数只能给出由线性方程描述的 X 和 Y的相关性。其次,斯皮尔曼不需要先验知识(也就是说, 知道其参数)便可以准确获取X 和 Y的采样概率分布。在此例中,我们要使用下表所给出的原始数据计算一个人的 智商和其每周花在 电视上的小时数的相关性。首先,我们必须根据以下步骤计算出 d i 2 {displaystyle d_{i}^{2}} ,如下表所示。根据 d i 2 {displaystyle d_{i}^{2}} 计算 ∑ d i 2 = 194 {displaystyle sum d_{i}^{2}=194} 。 样本容量n为 10。 将这些值带入方程得 ρ = −0.175757575...这个值很大表明上述两个变量的关系很小。 原始数据不能用于此方程中,相应的, 应使用皮尔逊相关系数计算等级。一种确定被观测数据的 ρ 值是否显著不为零(r 总是有 1 ≥ r ≥ −1)的方法是计算它是否大于 r的概率,作为 原假设,并使用分层排列测试进行检验。 这种方法的优势之处在于它考虑了样本中的数据个数和在使用样本计算等级相关系数的风险。另外的一种方法是使用皮尔逊积矩中使用到的费雪变换。也就是,ρ 的置信区间和零检验可以通过费雪变换获得如果 F(r) 是 r 的Fisher变换, 则是 r的z-值 ,其中,r在统计依赖(ρ = 0).的零假设下 近似服从标准 正态分布。显著性为其在零假设下近似服从自由度为 n − 2的t分布 。 A justification for this result relies on a permutation argument.一般地,斯皮尔曼相关系数在有三个或更多条件的情况下是有用的。并且,它预测观测数据有一个特定的顺序。 例如,在同一任务中,一系列的个体会被尝试多次,并预测在多次尝试过程中,性能会得到提升。在这种情况下,对条件间趋势的显著性检验由E. B. Page 发展了,并通常称为给定序列下的 Page趋势测验。经典的 一致性分析 是一种统计方法,它给两个标称变量赋给一个分数。 通过这种方法, 两个变量间的皮尔逊相关系数被最大化了。有一种被称为级别相关分析的等价方法, 它最大化了斯皮尔曼相关系数或 肯德尔相关系数.

相关

  • 尿道综合征尿道综合征(Urethral syndrome)为较低段的泌尿道感染之一组病症。然而,尿道综合征是不同于其它的泌尿道疾病、由于其没有传统上的病原体菌尿(bacteriuria)显著的症状呈现。典
  • 东部非洲东非即东部非洲地区,根据联合国的次分区共有19个国家或属地:亚洲东亚 · 东南亚 · 南亚 · 中亚 · 西亚/西南亚 · 北亚/西伯利亚  · 东北亚 其他:近东 · 中东
  • 保加利亚第一帝国奥德里西亚 前460年–46年罗马时期 46年–681年旧大保加利亚 632年–668年第一帝国 681年–1018年拜占庭保加利亚 1018年–1185年第二帝国 1185年–1396年奥斯曼帝国统治 13
  • 采集渔猎狩猎采集者是指生活在大部分或所有的食物都是通过觅食(采集野生植物和追捕野生动物)的社会或群体中的人。狩猎采集社会与农业社会形成对比,后者主要依靠驯化物种来生活。狩猎和
  • 黄帝外经《黄帝外经》首见于《汉书》卷三十,艺文志第五,方技类之医经中,惟不见录经文。相关之书目为:《黄帝外经》三十九卷或三十七卷。另有《扁鹊外经》十二卷。又有《白氏外经》三十六
  • 玛格丽特·伯比奇爱莲娜·玛格丽特·伯比奇(英语:Eleanor Margaret Burbidge, née Peachey,FRS,1919年8月12日-),英国出生的美国天文学家,因为她的原创性研究而闻名,并且担任包含格林尼治天文台台长
  • 纽约公共图书馆纽约公共图书馆(New York Public Library, NYPL)是美国主要图书馆系统之一,和布鲁克林公共图书馆系统、皇后图书馆系统一起组成纽约市的三大公共图书馆系统。纽约公共图书馆总
  • 商务部美国商务部(英语:United States Department of Commerce),是美国联邦行政部门之一,负责美国国际贸易、出口管制、贸易救济措施等。美国商务部设美国商务部长(Secretary)、常务副部
  • 李提克·罗山李提克·罗森 (英语:Hrithik Roshan,1974年1月10日-)是当代印度宝莱坞演员,‘票房大柱’,他八十年代作为儿童演员出道,九十年代至今曾经多次获得印度电影界的大奖。李提克·罗森1974
  • 灭绝事件生物集群灭绝是指在一个相对短暂的地质时段中,在一个以上并且较大的地理区域范围内,生物数量和种类急剧下降的事件。这个概念主要是指宏观生物,因为微生物的多样性和数量很难推