首页 >
环绕数
✍ dations ◷ 2025-06-07 11:22:04 #环绕数
在数学中,环绕数(linking number)是描述三维空间中两条闭曲线环绕的一个数值不变量。直观上,环绕数表示每一条曲线缠绕另一条曲线的次数。环绕数总是整数,但有可能取正数或负数,取决于这两条曲线的定向。环绕数由高斯以环绕积分的形式引入。它在纽结理论、代数拓扑和微分几何的研究中是重要的对象,并在数学和科学中有许多应用,包括量子力学、电磁学以及 DNA超螺旋的研究。空间中任何两条闭曲线都恰好可以移动成如下标准位置之一。这决定了环绕数:每条曲线在移动过程中可以穿过自身,但这两条曲线保持互相分离。存在一个算法计算出一个链环图表的环绕数。按如下法则将每个交叉标记为“正”或“负”
:正交叉数总数减去负交叉数总数等于环绕数的两倍,即这里 n1, n2, n3, n4 分别表示四类交叉数的个数。两个和
n
1
+
n
3
{displaystyle n_{1}+n_{3},!}
与
n
2
+
n
4
{displaystyle n_{2}+n_{4},!}
总相等。这样得到了如下另外的公式注意到
n
1
−
n
4
{displaystyle n_{1}-n_{4}}
只涉及到蓝曲线被红曲线下交叉,而
n
2
−
n
3
{displaystyle n_{2}-n_{3}}
只涉及到上交叉。给定两条不交可微曲线
γ
1
,
γ
2
:
S
1
→
R
3
{displaystyle gamma _{1},gamma _{2}colon S^{1}rightarrow mathbb {R} ^{3}}
,定义从环面到单位球面高斯映射
Γ
{displaystyle Gamma }
为取单位球面上一点 v,从而链环的正交投影到垂直于 v 的平面给出一个链环图表。观察到点 (s, t) 在高斯映射下映为 v 对应于链环图表中一个交叉,这里
γ
1
{displaystyle gamma _{1}}
在
γ
2
{displaystyle gamma _{2}}
上。并且 (s, t) 的一个邻域在高斯映射下映为 v 的一个邻域,保持或逆转定向取决于交叉的符号。从而为了计算这个对应于 v 的链环图表的环绕数,只需数高斯映射覆盖 v 的带符号次数。由于 v 是一个正则值,这恰是高斯映射的度数(即 Γ 的像盖住球面的带符号次数)。环绕数的同痕不变性自动由度数在同伦下不变得到。任何其它正则值将得到相同的数,所以环绕数与任何特定的链环图表无关。曲线 γ1 与 γ2 的环绕数的这种表述给出了用二重线积分表示的一个明确公式,即高斯环绕积分:这个积分求出了高斯映射像的全部带符号面积(被积函数是 Γ 的雅可比矩阵),然后除以球面的面积(等于 4π)。U(1) 陈-西蒙斯理论是:C
S
=
k
4
π
∫
M
A
d
A
{displaystyle CS={frac {k}{4pi }}int _{M}AdA}若
M
=
R
3
{displaystyle M=R^{3}}
,路径积分是Z
(
C
1
,
C
2
)
=
∫
d
A
exp
(
i
C
S
+
i
∫
C
1
A
+
i
∫
C
2
A
)
=
∫
d
A
exp
(
i
C
S
+
i
∫
J
A
)
{displaystyle Z(C_{1},C_{2})=int dAexp {(iCS+iint _{C_{1}}A+iint _{C_{2}}A)}=int dAexp {(iCS+iint JA)}}
,包括C1和C2的威尔森循环。J=J1+J2,而且J
i
a
=
∫
C
i
d
x
a
δ
3
(
x
−
x
i
(
t
)
)
{displaystyle J_{i}^{a}=int _{C_{i}}dx^{a}delta ^{3}(x-x_{i}(t))}因为这是高斯的积分,所以我们不需要重整化或正规化。再说这个积分是拓扑不变。若J是经典方程就是d
A
=
(
2
π
/
k
)
∗
J
{displaystyle dA=(2pi /k)*J}或∇
×
A
=
2
π
J
/
k
{displaystyle nabla times A=2pi J/k}若我们选洛伦茨规范
d
∗
A
=
0
{displaystyle d*A=0}∇
2
A
=
−
2
π
∇
×
J
/
k
{displaystyle nabla ^{2}A=-2pi nabla times J/k}从电磁学,解是A
(
x
)
=
1
2
k
∫
d
3
y
∇
×
J
(
y
)
|
x
−
y
|
{displaystyle A(x)={frac {1}{2k}}int d^{3}y{frac {nabla times J(y)}{|x-y|}}}则Z
[
C
1
,
C
2
]
=
exp
(
2
π
i
ϕ
(
C
1
,
C
2
)
/
k
)
{displaystyle Z=exp(2pi iphi (C_{1},C_{2})/k)}这是最简单的一个拓扑量子场论。根据爱德华·威滕的证明,非阿贝尔G的陈-西蒙斯论给其他拓扑不变,例如琼斯多项式。
相关
- 视网膜色素变性 19视网膜色素变性,或称视网膜色素病变(Retinitis Pigmentosa,简称RP),是一种遗传性眼科疾病。初期普遍的病征是夜盲、视野变窄,可以看到正前方景物,但略偏左右的视野就无法看见,RP病人
- 性别重置手术性别重置手术(英语:Sex reassignment surgery,缩写:SRS),也称为性别还原手术、变性手术、性转换手术(英语:Transsexual surgery)等等,是一项外科技术,也是一种阉割手术,通过这种手术程序
- 假色假色是指在一幅影像中使用与全彩不同的颜色描述一项物体。全彩是指影像中的物体颜色和人类肉眼所见的颜色非常相似。在黑白影像中全彩则是指物体的明亮程度。但因为颜色染料
- 印度宪法印度宪法为印度最高法律,是世界上所有主权国家中最长的成文宪法。其主要建构者是阿姆倍伽尔。宪法于1949年11月26日由制宪会议通过,1950年1月26日生效。自此印度自治领成为当
- 扬马延扬马延(挪威语:Jan Mayen)是一个位于北冰洋的火山岛屿,是挪威的领土。岛长约55 km(34 mi),面积约 377 km2(146 sq mi) ,贝伦火山附近约114.2 km(71.0 mi)被冰川所覆盖,约占岛上约1
- 磺酸磺酸是含有磺酸基-SO2OH(-S(=O)(=O)-OH)的一类有机化合物。一般它们的酸性比相应羧酸强,可与蛋白质和碳水化合物紧密结合。在很多反应中用作催化剂和反应中间体。磺酸基与氢相
- 悦般悦般是北魏时一个西域国家,最初在龟兹以北游牧,其后活动于乌孙西北(大约在今日的七河地区),最早出现在《魏书》,记载为“匈奴北单于之部落”,即窦宪打败又西走的无名号北单于,悦般为
- 1-三十烷醇1-三十烷醇(1-Triacontanol)是一种饱和一元醇,化学式C30H62O,常见于植物叶表皮蜡,与蜂蜡。1-三十烷醇是多种植物的生长因子,比较经典的例子是玫瑰,其能显著增长玫瑰的基部分叉数。
- 巨正则系综巨正则系综(英语:grand canonical ensemble)是正则系综的推广。是统计力学系综的一种。每个系综内的体系不仅可以和其他体系交换能量,也可以交换粒子,但系综内各体系的能量总和以
- 荷兰裔加拿大人荷兰裔加拿大人(英语:Dutch Canadians;荷兰语:Nederlandse Canadezen)指的是拥有荷兰人血统的加拿大国民。根据2006年的加拿大人口普查,一共有1,035,965名加拿大人拥有纯正或部分