首页 >
环绕数
✍ dations ◷ 2025-12-09 20:23:02 #环绕数
在数学中,环绕数(linking number)是描述三维空间中两条闭曲线环绕的一个数值不变量。直观上,环绕数表示每一条曲线缠绕另一条曲线的次数。环绕数总是整数,但有可能取正数或负数,取决于这两条曲线的定向。环绕数由高斯以环绕积分的形式引入。它在纽结理论、代数拓扑和微分几何的研究中是重要的对象,并在数学和科学中有许多应用,包括量子力学、电磁学以及 DNA超螺旋的研究。空间中任何两条闭曲线都恰好可以移动成如下标准位置之一。这决定了环绕数:每条曲线在移动过程中可以穿过自身,但这两条曲线保持互相分离。存在一个算法计算出一个链环图表的环绕数。按如下法则将每个交叉标记为“正”或“负”
:正交叉数总数减去负交叉数总数等于环绕数的两倍,即这里 n1, n2, n3, n4 分别表示四类交叉数的个数。两个和
n
1
+
n
3
{displaystyle n_{1}+n_{3},!}
与
n
2
+
n
4
{displaystyle n_{2}+n_{4},!}
总相等。这样得到了如下另外的公式注意到
n
1
−
n
4
{displaystyle n_{1}-n_{4}}
只涉及到蓝曲线被红曲线下交叉,而
n
2
−
n
3
{displaystyle n_{2}-n_{3}}
只涉及到上交叉。给定两条不交可微曲线
γ
1
,
γ
2
:
S
1
→
R
3
{displaystyle gamma _{1},gamma _{2}colon S^{1}rightarrow mathbb {R} ^{3}}
,定义从环面到单位球面高斯映射
Γ
{displaystyle Gamma }
为取单位球面上一点 v,从而链环的正交投影到垂直于 v 的平面给出一个链环图表。观察到点 (s, t) 在高斯映射下映为 v 对应于链环图表中一个交叉,这里
γ
1
{displaystyle gamma _{1}}
在
γ
2
{displaystyle gamma _{2}}
上。并且 (s, t) 的一个邻域在高斯映射下映为 v 的一个邻域,保持或逆转定向取决于交叉的符号。从而为了计算这个对应于 v 的链环图表的环绕数,只需数高斯映射覆盖 v 的带符号次数。由于 v 是一个正则值,这恰是高斯映射的度数(即 Γ 的像盖住球面的带符号次数)。环绕数的同痕不变性自动由度数在同伦下不变得到。任何其它正则值将得到相同的数,所以环绕数与任何特定的链环图表无关。曲线 γ1 与 γ2 的环绕数的这种表述给出了用二重线积分表示的一个明确公式,即高斯环绕积分:这个积分求出了高斯映射像的全部带符号面积(被积函数是 Γ 的雅可比矩阵),然后除以球面的面积(等于 4π)。U(1) 陈-西蒙斯理论是:C
S
=
k
4
π
∫
M
A
d
A
{displaystyle CS={frac {k}{4pi }}int _{M}AdA}若
M
=
R
3
{displaystyle M=R^{3}}
,路径积分是Z
(
C
1
,
C
2
)
=
∫
d
A
exp
(
i
C
S
+
i
∫
C
1
A
+
i
∫
C
2
A
)
=
∫
d
A
exp
(
i
C
S
+
i
∫
J
A
)
{displaystyle Z(C_{1},C_{2})=int dAexp {(iCS+iint _{C_{1}}A+iint _{C_{2}}A)}=int dAexp {(iCS+iint JA)}}
,包括C1和C2的威尔森循环。J=J1+J2,而且J
i
a
=
∫
C
i
d
x
a
δ
3
(
x
−
x
i
(
t
)
)
{displaystyle J_{i}^{a}=int _{C_{i}}dx^{a}delta ^{3}(x-x_{i}(t))}因为这是高斯的积分,所以我们不需要重整化或正规化。再说这个积分是拓扑不变。若J是经典方程就是d
A
=
(
2
π
/
k
)
∗
J
{displaystyle dA=(2pi /k)*J}或∇
×
A
=
2
π
J
/
k
{displaystyle nabla times A=2pi J/k}若我们选洛伦茨规范
d
∗
A
=
0
{displaystyle d*A=0}∇
2
A
=
−
2
π
∇
×
J
/
k
{displaystyle nabla ^{2}A=-2pi nabla times J/k}从电磁学,解是A
(
x
)
=
1
2
k
∫
d
3
y
∇
×
J
(
y
)
|
x
−
y
|
{displaystyle A(x)={frac {1}{2k}}int d^{3}y{frac {nabla times J(y)}{|x-y|}}}则Z
[
C
1
,
C
2
]
=
exp
(
2
π
i
ϕ
(
C
1
,
C
2
)
/
k
)
{displaystyle Z=exp(2pi iphi (C_{1},C_{2})/k)}这是最简单的一个拓扑量子场论。根据爱德华·威滕的证明,非阿贝尔G的陈-西蒙斯论给其他拓扑不变,例如琼斯多项式。
相关
- 狂躁狂躁(英语:Mania),或狂躁症,是异常激活唤起、情感和能量水平状态,或者也可以说,是“一种伴有情绪高涨和情绪起伏不定的过度反应”状态。虽然“狂躁”经常被视为是抑郁的对立面,但是
- 医用微生物及免疫学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学免疫学(英语:Immunology)是生物医学的一
- 胸在解剖学上,胸部在许多动物身体的其中一部分。人科动物(包括人类)的胸部位于颈部和腹部之间,由肋骨、脊椎和肩带骨骼所支撑。胸部同时有乳房部分,女性的乳房作哺乳之用,因此胸部也
- 光子光子(Photon)是一种基本粒子,是电磁辐射的量子。在量子场论里是负责传递电磁力的力载子(英语:force carrier):17-18。这种作用力的效应在微观层次或宏观层次都可以很容易地观察到,
- 邻二甲苯邻二甲苯是苯邻位的两个氢被甲基取代后形成的化合物,可以从二甲苯的分馏中大量获得,被大量用来制造苯酐。
- 多媒体机台互动式资讯服务站(英语:Interactive kiosk,简称:Kiosk)是一部电脑终端机,以特定规格的硬件与软件来制作,用来提供通讯、商业、娱乐或是教育的资讯与应用服务。早期的互动式资讯服务
- 中和反应中和反应是化学反应中复分解反应的一种,是指酸和碱互相交换组分,生成盐和水的反应,在中和的过程中,酸里的氢离子和碱中的氢氧根离子会结合成水。中和反应的过程会释放热量,属于放
- 2011年 艾斯伦第二十五届冬季世界大学生运动会于2011年1月27日至2011年2月8日在土耳其埃尔祖鲁姆(Erzurum)举行。埃尔祖鲁姆是土耳其海拔最高的城市(1850米),且有超过320件文化地标。埃尔祖鲁
- 原住民族委员会原住民族委员会(简称原民会)为中华民国有关台湾原住民族事务的最高主管机关,成立于1996年12月。1996年11月1日,立法院三读通过《行政院原住民委员会组织条例》。1996年12月10日,
- 俄亥俄河俄亥俄河(英语:Ohio River)是美国东部的一条河流,是密西西比河最东的支流。发源于匹兹堡,初向西北流,在宾夕法尼亚州、西维吉尼亚州和俄亥俄州的边界以下转向西南方,并流经肯塔基州
