首页 >
环绕数
✍ dations ◷ 2024-12-22 19:06:15 #环绕数
在数学中,环绕数(linking number)是描述三维空间中两条闭曲线环绕的一个数值不变量。直观上,环绕数表示每一条曲线缠绕另一条曲线的次数。环绕数总是整数,但有可能取正数或负数,取决于这两条曲线的定向。环绕数由高斯以环绕积分的形式引入。它在纽结理论、代数拓扑和微分几何的研究中是重要的对象,并在数学和科学中有许多应用,包括量子力学、电磁学以及 DNA超螺旋的研究。空间中任何两条闭曲线都恰好可以移动成如下标准位置之一。这决定了环绕数:每条曲线在移动过程中可以穿过自身,但这两条曲线保持互相分离。存在一个算法计算出一个链环图表的环绕数。按如下法则将每个交叉标记为“正”或“负”
:正交叉数总数减去负交叉数总数等于环绕数的两倍,即这里 n1, n2, n3, n4 分别表示四类交叉数的个数。两个和
n
1
+
n
3
{displaystyle n_{1}+n_{3},!}
与
n
2
+
n
4
{displaystyle n_{2}+n_{4},!}
总相等。这样得到了如下另外的公式注意到
n
1
−
n
4
{displaystyle n_{1}-n_{4}}
只涉及到蓝曲线被红曲线下交叉,而
n
2
−
n
3
{displaystyle n_{2}-n_{3}}
只涉及到上交叉。给定两条不交可微曲线
γ
1
,
γ
2
:
S
1
→
R
3
{displaystyle gamma _{1},gamma _{2}colon S^{1}rightarrow mathbb {R} ^{3}}
,定义从环面到单位球面高斯映射
Γ
{displaystyle Gamma }
为取单位球面上一点 v,从而链环的正交投影到垂直于 v 的平面给出一个链环图表。观察到点 (s, t) 在高斯映射下映为 v 对应于链环图表中一个交叉,这里
γ
1
{displaystyle gamma _{1}}
在
γ
2
{displaystyle gamma _{2}}
上。并且 (s, t) 的一个邻域在高斯映射下映为 v 的一个邻域,保持或逆转定向取决于交叉的符号。从而为了计算这个对应于 v 的链环图表的环绕数,只需数高斯映射覆盖 v 的带符号次数。由于 v 是一个正则值,这恰是高斯映射的度数(即 Γ 的像盖住球面的带符号次数)。环绕数的同痕不变性自动由度数在同伦下不变得到。任何其它正则值将得到相同的数,所以环绕数与任何特定的链环图表无关。曲线 γ1 与 γ2 的环绕数的这种表述给出了用二重线积分表示的一个明确公式,即高斯环绕积分:这个积分求出了高斯映射像的全部带符号面积(被积函数是 Γ 的雅可比矩阵),然后除以球面的面积(等于 4π)。U(1) 陈-西蒙斯理论是:C
S
=
k
4
π
∫
M
A
d
A
{displaystyle CS={frac {k}{4pi }}int _{M}AdA}若
M
=
R
3
{displaystyle M=R^{3}}
,路径积分是Z
(
C
1
,
C
2
)
=
∫
d
A
exp
(
i
C
S
+
i
∫
C
1
A
+
i
∫
C
2
A
)
=
∫
d
A
exp
(
i
C
S
+
i
∫
J
A
)
{displaystyle Z(C_{1},C_{2})=int dAexp {(iCS+iint _{C_{1}}A+iint _{C_{2}}A)}=int dAexp {(iCS+iint JA)}}
,包括C1和C2的威尔森循环。J=J1+J2,而且J
i
a
=
∫
C
i
d
x
a
δ
3
(
x
−
x
i
(
t
)
)
{displaystyle J_{i}^{a}=int _{C_{i}}dx^{a}delta ^{3}(x-x_{i}(t))}因为这是高斯的积分,所以我们不需要重整化或正规化。再说这个积分是拓扑不变。若J是经典方程就是d
A
=
(
2
π
/
k
)
∗
J
{displaystyle dA=(2pi /k)*J}或∇
×
A
=
2
π
J
/
k
{displaystyle nabla times A=2pi J/k}若我们选洛伦茨规范
d
∗
A
=
0
{displaystyle d*A=0}∇
2
A
=
−
2
π
∇
×
J
/
k
{displaystyle nabla ^{2}A=-2pi nabla times J/k}从电磁学,解是A
(
x
)
=
1
2
k
∫
d
3
y
∇
×
J
(
y
)
|
x
−
y
|
{displaystyle A(x)={frac {1}{2k}}int d^{3}y{frac {nabla times J(y)}{|x-y|}}}则Z
[
C
1
,
C
2
]
=
exp
(
2
π
i
ϕ
(
C
1
,
C
2
)
/
k
)
{displaystyle Z=exp(2pi iphi (C_{1},C_{2})/k)}这是最简单的一个拓扑量子场论。根据爱德华·威滕的证明,非阿贝尔G的陈-西蒙斯论给其他拓扑不变,例如琼斯多项式。
相关
- 脐带脐带(学名:Funiculus umbilicalis)是几乎所有哺乳动物(包括人)的母体内,胎儿与怀孕的母亲的胎盘的一种联系结构。脐带状如绳索,表面光滑透明,内含结缔组织和血管;在胎盘内胎儿的血液
- 生育控制生育控制(英语:Birth control)也称为避孕,是避免怀孕的方式或是设备。而计划生育即对生育子女的数量和时间做出计划,其中也会包括取得及使用避孕设备或方式。从远古时代以来,人类
- H6N1H6N1(英语:Influenza A virus subtype H6N1,记作A(H6N1)或H6N1)是一种甲型流感病毒,是禽流感病毒或禽流感病毒的一个亚型。H6N1最初于2013年6月21日在台湾发现,首例患者是一名住在
- 边缘运算边缘运算(英语:Edge computing),又译为边缘计算,是一种分散式运算的架构,将应用程序、数据资料与服务的运算,由网络中心节点,移往网络逻辑上的边缘节点来处理。边缘运算将原本完全由
- 尼安德特人尼安德特人(学名:Homo neanderthalensis,简称尼人)是一群生存于旧石器时代的史前人类,1856 年,其遗迹首先在德国尼安德河谷被发现。目前按照国际科学分类二名法归类为人科人属,至于
- 真双子叶植物真双子叶植物(学名:eudicots)是被子植物的演化支之一,由道利(Doyle)和霍顿(Hotton)在1991年提出来的,是划分被子植物门中“非木兰类双子叶植物”,也就是说花粉具有三孔的植物类群。包
- 图卢兹1法国统计部门在计算土地面积时,不计算面积大于1平方公里的湖泊、池塘、冰川和河口。图卢兹(法语:Toulouse)位于法国西南部加龙河畔,大致处于大西洋和地中海之间的中点,为上加龙省
- 鲁文·里夫林鲁文·里夫林(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Ta
- 空袭达尔文1942年2月19日,日本空袭达尔文(Bombing of Darwin)是历史上外国军队对澳大利亚规模最大的袭击,也是二战太平洋战争中重要的一次军事行动,给澳大利亚人带来了心理上的打击。数周之
- 进行性骨化性纤维发育不良M61.10、M61.111、M61.112、M61.119、M61.121、M61.122、M61.129、M61.131、M61.132、M61.139、M61.141、M61.142、M61.143、M61.144、M61.145、M61.146、M61.151、M61.152