环绕数

✍ dations ◷ 2024-07-05 15:11:28 #环绕数
在数学中,环绕数(linking number)是描述三维空间中两条闭曲线环绕的一个数值不变量。直观上,环绕数表示每一条曲线缠绕另一条曲线的次数。环绕数总是整数,但有可能取正数或负数,取决于这两条曲线的定向。环绕数由高斯以环绕积分的形式引入。它在纽结理论、代数拓扑和微分几何的研究中是重要的对象,并在数学和科学中有许多应用,包括量子力学、电磁学以及 DNA超螺旋的研究。空间中任何两条闭曲线都恰好可以移动成如下标准位置之一。这决定了环绕数:每条曲线在移动过程中可以穿过自身,但这两条曲线保持互相分离。存在一个算法计算出一个链环图表的环绕数。按如下法则将每个交叉标记为“正”或“负” :正交叉数总数减去负交叉数总数等于环绕数的两倍,即这里 n1, n2, n3, n4 分别表示四类交叉数的个数。两个和 n 1 + n 3 {displaystyle n_{1}+n_{3},!} 与 n 2 + n 4 {displaystyle n_{2}+n_{4},!} 总相等。这样得到了如下另外的公式注意到 n 1 − n 4 {displaystyle n_{1}-n_{4}} 只涉及到蓝曲线被红曲线下交叉,而 n 2 − n 3 {displaystyle n_{2}-n_{3}} 只涉及到上交叉。给定两条不交可微曲线 γ 1 , γ 2 : S 1 → R 3 {displaystyle gamma _{1},gamma _{2}colon S^{1}rightarrow mathbb {R} ^{3}} ,定义从环面到单位球面高斯映射 Γ {displaystyle Gamma } 为取单位球面上一点 v,从而链环的正交投影到垂直于 v 的平面给出一个链环图表。观察到点 (s, t) 在高斯映射下映为 v 对应于链环图表中一个交叉,这里 γ 1 {displaystyle gamma _{1}} 在 γ 2 {displaystyle gamma _{2}} 上。并且 (s, t) 的一个邻域在高斯映射下映为 v 的一个邻域,保持或逆转定向取决于交叉的符号。从而为了计算这个对应于 v 的链环图表的环绕数,只需数高斯映射覆盖 v 的带符号次数。由于 v 是一个正则值,这恰是高斯映射的度数(即 Γ 的像盖住球面的带符号次数)。环绕数的同痕不变性自动由度数在同伦下不变得到。任何其它正则值将得到相同的数,所以环绕数与任何特定的链环图表无关。曲线 γ1 与 γ2 的环绕数的这种表述给出了用二重线积分表示的一个明确公式,即高斯环绕积分:这个积分求出了高斯映射像的全部带符号面积(被积函数是 Γ 的雅可比矩阵),然后除以球面的面积(等于 4π)。U(1) 陈-西蒙斯理论是:C S = k 4 π ∫ M A d A {displaystyle CS={frac {k}{4pi }}int _{M}AdA}若 M = R 3 {displaystyle M=R^{3}} ,路径积分是Z ( C 1 , C 2 ) = ∫ d A exp ⁡ ( i C S + i ∫ C 1 A + i ∫ C 2 A ) = ∫ d A exp ⁡ ( i C S + i ∫ J A ) {displaystyle Z(C_{1},C_{2})=int dAexp {(iCS+iint _{C_{1}}A+iint _{C_{2}}A)}=int dAexp {(iCS+iint JA)}} ,包括C1和C2的威尔森循环。J=J1+J2,而且J i a = ∫ C i d x a δ 3 ( x − x i ( t ) ) {displaystyle J_{i}^{a}=int _{C_{i}}dx^{a}delta ^{3}(x-x_{i}(t))}因为这是高斯的积分,所以我们不需要重整化或正规化。再说这个积分是拓扑不变。若J是经典方程就是d A = ( 2 π / k ) ∗ J {displaystyle dA=(2pi /k)*J}或∇ × A = 2 π J / k {displaystyle nabla times A=2pi J/k}若我们选洛伦茨规范 d ∗ A = 0 {displaystyle d*A=0}∇ 2 A = − 2 π ∇ × J / k {displaystyle nabla ^{2}A=-2pi nabla times J/k}从电磁学,解是A ( x ) = 1 2 k ∫ d 3 y ∇ × J ( y ) | x − y | {displaystyle A(x)={frac {1}{2k}}int d^{3}y{frac {nabla times J(y)}{|x-y|}}}则Z [ C 1 , C 2 ] = exp ⁡ ( 2 π i ϕ ( C 1 , C 2 ) / k ) {displaystyle Z=exp(2pi iphi (C_{1},C_{2})/k)}这是最简单的一个拓扑量子场论。根据爱德华·威滕的证明,非阿贝尔G的陈-西蒙斯论给其他拓扑不变,例如琼斯多项式。

相关

  • 绿非硫细菌绿弯菌门(Chloroflexi)是一类通过光合作用产生能量的细菌,又称作绿非硫细菌,尽管还有一部分称作热微菌的细菌也属于绿非硫细菌。它们具有绿色的色素,包括作为反应中心的菌绿素a和
  • 指甲指(趾)甲,亦称指(趾)盖、指(趾)甲盖、指(趾)头盖等,分为手指甲(简称手甲)或脚趾甲(简称脚甲),是哺乳类动物长于肢体指前端的由皮肤角质层硬化的一层硬物,指(趾)甲的作用是保护末节指腹避免受损
  • 1美分硬币1美分硬币(统称:ONE CENT)是美利坚合众国法定流通货币的一种,为美元中的最小单位,美分是美元最小的使用单位,符号为¢,100美分相等于1美元。因其背面刻有林肯侧面上身像,又被称为林
  • 抗心律不整药抗心律失常药(英语:Antiarrhythmic agents)是一类用于抑制心脏非正常节律(心律失常)的药物,这些情况例如心房颤动、心房扑动、心室性心搏过速以及心室颤动。很多人试图将此类药物
  • 脏腑脏腑,是中医对内脏的总称,通称五脏六腑。根据《素问‧五脏别论篇》,“脏”指的是人体内的五脏,即:肝、心、脾、肺、肾(加上心包即为六脏),主要功能为生化和蓄存精气;以及六腑,即:胆、小
  • 甲醇甲醇(英语:Methanol,或Methyl alcohol;分子式:CH3OH或MeOH)又称羟基甲烷、木醇(wood alcohol)与木精(wood spirits),是一种有机化合物,为最简单的醇类。甲醇有“木醇”与“木精”之名,源
  • 蒸汽朋克蒸汽朋克(英语:Steampunk)是一种流行于20世纪80年代至90年代初的科幻题材,显著特征为故事都设定于一个蒸气科技达到巅峰的架空世界。这类故事对距今已较遥远的工业革命时代的科
  • 刘颂豪刘颂豪(1930年11月-),中国光学与激光专家。原籍广东顺德,生于广东广州,1951年毕业于广东文理学院。原中国科学院安徽光学精密机械研究所研究员、所长,原华南师范大学校长。1999年当
  • 广亩城市广亩城市(英语:Broadacre City)是由建筑师弗兰克·劳埃德·赖特在其1932年出版的著作《正在消灭中的城市》(The Disappearing City)中提出的一个城市规划概念构想。他认为现代的
  • 选举制度投票制度(Electoral system),指根据投票人的选择以选出结果的方法。从最基本看,所谓选举制度,就是把选举中选民所投之选票转换成政党和候选人赢得之议席:7。最常见的投票莫过于选