克莱尼代数

✍ dations ◷ 2025-07-05 17:17:50 #克莱尼代数

克莱尼代数(名称源自于美国数学家逻辑学家 斯蒂芬·科尔·克莱尼)在数学中是下列两个事物之一:

在文献中给出了 Kleene 代数和相关结构的各种不等价的定义。总揽可见 。下面给出当代最常用的定义。

Kleene 代数是带有分别写为 + 、 和 * 的,两个二元运算 + : × → 和 · : × → ,和一个函数 * : → 的集合 ,所以满足下列公理。

上述公理定义了一个半环。我们进一步要求:

现在可以定义在 上的偏序 ≤,通过设定 ≤ 当且仅当 + = (或等价的: ≤ 当且仅当 存在一个 使得 + = )。通过这个次序我们可以公式化关于运算 * 的最后两个公理:

在直觉上,我们应当把 + 当作"并"或 和 的"最小上界",和把 当作某种单调性的乘法,在 ≤ 蕴涵 ≤ 的意义上。星号背后的想法是 * = 1 + + + + ... 从编程理论的观点,你还可以把 + 解释所谓"选择",把 · 解释为"顺序",把 * 解释为"重复"。

设 Σ 是有限集合("字母表")并设 是在 Σ 上所有正则表达式的集合。我们认为两个正则表达式是相等的,如果它们描述同样的语言。则 形成一个 Kleene 代数。事实上,这是自由 Kleene 代数,在正则表达式上的任何等式都从 Kleene 代数的公理得出,并且因此在所有 Kleene 代数中都是有效的意义上。

再次设 Σ 是字母表。设 是在 Σ 上所有正则语言的集合(或在 Σ 上所有上下文无关语言的集合;或在 Σ 上所有递归语言的集合;或在 Σ 上所有语言的集合)。则 的两个元素的并集(写为 +)和串接(写为 ·)再次属于 ,并且 Kleene星号运算也适用于 的任何元素。我们获得了 0 为空集而 1 为只包含空字符串的集合的 Kleene 代数 。

设 是带有单位元 的幺半群,并设 是 的所有子集的集合。对于两个这样的子集 和 ,设 + 是 和 的并集并设 = { : ∈ ∧ ∈ }。* 被定义为 生成的 的子幺半群,它可以被描述为 {} ∪ ∪ ∪ ∪ ... 则 形成 0 为空集而 1 为 {} 的 Kleene 代数。对任何小范畴都可以进行类似的构造。

假设 是一个集合而 是在 上所有二元关系的集合。采用 + 为并,· 为复合,* 为自反传递凸包(hull),我们就得到了 Kleene 代数。

带有运算 ∨ 和 ∧ 的所有布尔代数成为 Kleene 代数,如果我们对 + 使用 ∨,对 ·使用 ∧,并对所有 设立 * = 1。

在计算权重有向图中的最短路径的时候一个非常不同的 Kleene 代数是有用的: 设 是扩展的实数轴,采用 + 为 和 的最小者,而 是 和 的普通和(带有 +∞ 和 -∞ 的和并定义为 +∞)。* 被定义对非负 为实数零对负 为 -∞。这是带有零元素 +∞ 和一元素是实数零的 Kleene 代数。

零是最小元素: 0 ≤ 对于 中所有的 。

+ 的和是 和 的最小上界: 我们有 ≤ + 和 ≤ + 并且如果 是 的一个元素有着 ≤ 和 ≤ ,则 + ≤ 。类似的,1 + ... + 是元素 1, ..., 的最小上界。

乘法和加法是单调性的: 如果 ≤ ,则 + ≤ + 、 ≤ 和 ≤ 对于 中所有的 。

关于 * 运算,我们有 0* = 1 和 1* = 1,* 是单调性的( ≤ 蕴涵 * ≤ *),而 ≤ * 对于所有自然数 。进一步的,(*)(*) = *、(*)* = * 和 ≤ * 当且仅当 * ≤ *。

如果 是 Kleene 代数而 是自然数,则你可以认为集合 M() 由带有 中条目的所有 × 矩阵构成。使用普通的矩阵加法和乘法概念,你可以定义一个唯一的 *-运算,所以 M() 成为一个 Kleene 代数。

Kleene 代数不是 Kleene 定义的;他介入了正则表达式并寻求一个完备的公理集合来允许在正则表达式上的所有等式的推导。首先约翰·何顿·康威在正则代数的名义下研究了这个问题。Dexter Kozen 最先证明了 Kleene 代数的公理解决了这个问题。

相关

  • 耐酸手套手套是包裹手的服饰或保护器材。作用有:手部保暖、装饰、宗教用途、保护手免遭伤害、隔离手部,特殊的手套也是体育运动的器材。手套在中国古代并不很普遍。一个原因是汉服的袖
  • 意大利国家航空航天局意大利航天局(意大利语:Agenzia Spaziale Italiana,缩写:ASI)是意大利政府于1988年为了对空间探索的资金运用、管理和协调而成立的空间机构。意大利航天局是意大利教育大学研究部
  • 家得宝家得宝(英语:The Home Depot;NYSE:HD)是美国一家家庭装饰品与建材的零售商,总部设于佐治亚州科布县维宁斯市。家得宝雇用超过355,000名员工,经营2,164家大型五金商场,分店遍及美国(包
  • 孙子兵法竹简本——1972年出土的汉初抄本,是现今为止最早的版本 1935年中华学艺社影宋刻《武经七书》本 丁氏八千卷楼藏刘寅《武经七书直解》影印本《孙子兵法》,即《孙子》,又称作《
  • 皮下脂肪组织脂肪组织在人体组织学上属于人体内一种松散的结缔组织,由脂肪细胞(一种细胞质内含有脂肪滴的细胞)组成,用来储存脂肪。可分为单房性脂肪组织和多房性脂肪组织两大类:脂肪组织的主
  • 网络本体语言网络本体语言(英语:Web Ontology Language,OWL)旨在提供一种可用于描述网络文档和应用之中所固有的那些类及其之间关系的语言。OWL网络本体语言当前已经获得万维网联盟认可的,用
  • ATC代码 (V01)A·B·C·D·G·H·QI·J·L·M·N·P·R·S·VATC代码V01(过敏原)是解剖学治疗学及化学分类系统的一个药物分组,这是由世界卫生组织药物统计方法整合中心(The WHO Collaboratin
  • 刘有铭刘有铭(1805年-1876年),字缄三,号镌山,又号蔗圃,直隶南皮县(今属河北省)人。清道光二十七年(1847年)进士,选庶吉士,散馆授翰林院编修。历官左都御史,迁刑部左侍郎。工诗词、书画。有《蔗圃
  • 德辅 (消歧义)德辅(英语:Des Vœux)可以指:
  • 埃斯特山坐标:82°18′S 155°4′E / 82.300°S 155.067°E / -82.300; 155.067埃斯特山(英语:Mount Ester)是南极洲的山峰,位于奥次地,海拔高度超过2,000米,根据美国地质调查局的测量和美