首页 >
正十二面体
✍ dations ◷ 2025-06-28 19:17:03 #正十二面体
正十二面体是由12个正五边形所组成的正多面体,它共有20个顶点、30条棱、160条对角线,被施莱夫利符号{5,3}所表示,与正二十面体互成对偶。它是一种只具有正四面体对称性(英语:tetrahedral symmetry)的五角十二面体的特殊形式,五角十二面体的另一种特殊形式是具有正八面体对称性(英语:Octahedral Symmetry)的卡塔兰多面体菱形十二面体,它(加上所有其它的五角十二面体)都与正十二面体在拓扑上等价。正十二面体还是截顶五方偏方面体的特例。其四维类比为正一百二十胞体。面的图形:正五边形
面的数目:12
边的数目:30
顶点数目:20
二面角角度:
θ
=
arccos
(
−
1
5
)
=
2
arctan
φ
≈
116.5650512
∘
{displaystyle {boldsymbol {theta }}=arccos left(-{frac {1}{sqrt {5}}}right)=2arctan varphi approx 116.5650512^{circ }}
如果正十二面体棱长为a:
表面积:
A
=
3
25
+
10
5
a
2
≈
20.645728807
a
2
{displaystyle A=3{sqrt {25+10{sqrt {5}}}}a^{2}approx 20.645728807a^{2}}
体积:
V
=
1
4
(
15
+
7
5
)
a
3
≈
7.6631189606
a
3
{displaystyle V={frac {1}{4}}(15+7{sqrt {5}})a^{3}approx 7.6631189606a^{3}}
外接球半径:
r
u
=
a
3
4
(
1
+
5
)
≈
1.401258538
⋅
a
{displaystyle r_{u}=a{frac {sqrt {3}}{4}}left(1+{sqrt {5}}right)approx 1.401258538cdot a}
内切球半径:
r
i
=
a
1
2
5
2
+
11
10
5
≈
1.113516364
⋅
a
{displaystyle r_{i}=a{frac {1}{2}}{sqrt {{frac {5}{2}}+{frac {11}{10}}{sqrt {5}}}}approx 1.113516364cdot a}
中交球半径:
r
m
=
a
1
4
(
3
+
5
)
≈
1.309016994
⋅
a
{displaystyle r_{m}=a{frac {1}{4}}left(3+{sqrt {5}}right)approx 1.309016994cdot a}对偶多面体:正二十面体如果我们以正十二面体的形心为原点建立三维直角坐标系,那么其20个顶点可被描述为:
(0,±φ,±1/φ)
(±1/φ,0,±φ)
(±φ,±1/φ,0)
(±1,±1,±1)
其中φ = (1+√5)/2,是黄金分割数,也被写作τ,约等于1.618。
该正十二面体棱长为2/φ=√5–1。其外接球半径正好为√3。正十二面体有两种特殊的正交投影,分别正对着其一个顶点和一个正五边形面,对应着A2和H2考克斯特平面(英语:Coxeter plane)在透视投影中,如果如果投影中心正在正十二面体外接球正对其一面的一点,则你能得到其施莱格尔图像(英语:schlegel diagram),我们亦可以将其视为球面多面体(英语:Spherical polyhedron)而使用球极投影。这些方法也被用于可视化其四维类比正一百二十胞体,一个由120个全等的正十二面体组成的四维凸正多胞体。正十二面体在拓扑上与一系列三阶正镶嵌(顶点图为n3)有关:正十二面体在拓扑上还和其它阶的正五边形正镶嵌{5,n}(n≥3)有关:正十二面体可以通过不同类型的截取操作来得到一系列不同的半正多面体及其对偶,正二十面体,构成了正二十面体家族:正十二面体与4个星形半正多面体(英语:nonconvex uniform polyhedron)和上述3个复合半正多面体有同样的顶点分布:正十二面体的3个星形化体(英语:stellation)都是星形正多面体(开普勒-普索多面体):化学:
相关
- 子宫颈癌子宫颈癌又称宫颈癌(英语:Cervical cancer),为发生在子宫颈的癌症 ,源自于不正常细胞的生长,甚至能侵袭或转移至身体其他部位。早期通常并不会有症状,而晚期时可能有不正常的阴道出
- 蛇杖阿斯克勒庇俄斯之杖,又称蛇杖,在西方文化中是一种象征医疗的标志,为希腊神话的医疗之神阿斯克勒庇俄斯所执之杖。Unicode所收录的编码为U+2695(⚕)。阿斯克勒庇俄斯之杖中的木棒
- 上腹壁动脉在人体解剖学中,上腹壁动脉(superior epigastric artery)指的是由内胸动脉(英语:internal thoracic artery)延伸入腹腔的动脉,并会与下腹壁动脉于肚脐形成动脉吻合(英语:anastomoses)
- 缓存高速缓存(英语:cache,/kæʃ/ KASH )简称缓存,原始意义是指访问速度比一般随机存取存储器(RAM)快的一种RAM,通常它不像系统主存那样使用DRAM技术,而使用昂贵但较快速的SRAM技术。Cach
- 威廉·默多克威廉·麦克马斯特·默多克(英语:William McMaster Murdoch,1873年2月28日 – 1912年4月15日)是苏格兰海员,也是英国皇家邮轮泰坦尼克号一副和皇家海军后备队上尉。威廉·默多克出
- N末端N端(亦作N-端,英语:N-terminus),又称氮端、氨基端,指多肽链具有游离的α氨基的末端。在转译过程中,多肽链是从N端往C端合成的,因而在书写表示多肽序列时,从N端开始书写,从左到右写到C
- 盐铁论《盐铁论》,中国西汉“盐铁会议”的记录,以对话体撰写,10卷60篇,作者桓宽。其中记载的是贤良文学(由地方推举的官员)与丞相、御史大夫(多数为名门子弟)之间的辩论。《盐铁论》是了解
- 埃厄战争埃塞俄比亚军事胜利厄立特里亚在国际法院获胜埃塞俄比亚-厄立特里亚战争发生于1998年5月至2000年6月。当事两国都属于世界上最贫穷国家之列,承受了非常大量的人员伤亡,最终边
- 24种欧洲联盟的语言指欧洲联盟成员国的民众使用的语言,包括欧盟的二十四种官方语言以及若干其他语言。欧盟支持语言的多样性,且设有“欧洲语言多样化专员”一职。欧盟成员国的语言
- 黄 钺《清代学者象传》之黄钺像黄钺(1750年-1841年),字左田,号左君,又号盲左,安徽太平府当涂县人,清朝大臣,历仕乾隆、嘉庆、道光三朝。是著名的教育家、画家、艺术评论家。黄钺为乾隆五十