首页 >
正十二面体
✍ dations ◷ 2025-04-25 22:42:32 #正十二面体
正十二面体是由12个正五边形所组成的正多面体,它共有20个顶点、30条棱、160条对角线,被施莱夫利符号{5,3}所表示,与正二十面体互成对偶。它是一种只具有正四面体对称性(英语:tetrahedral symmetry)的五角十二面体的特殊形式,五角十二面体的另一种特殊形式是具有正八面体对称性(英语:Octahedral Symmetry)的卡塔兰多面体菱形十二面体,它(加上所有其它的五角十二面体)都与正十二面体在拓扑上等价。正十二面体还是截顶五方偏方面体的特例。其四维类比为正一百二十胞体。面的图形:正五边形
面的数目:12
边的数目:30
顶点数目:20
二面角角度:
θ
=
arccos
(
−
1
5
)
=
2
arctan
φ
≈
116.5650512
∘
{displaystyle {boldsymbol {theta }}=arccos left(-{frac {1}{sqrt {5}}}right)=2arctan varphi approx 116.5650512^{circ }}
如果正十二面体棱长为a:
表面积:
A
=
3
25
+
10
5
a
2
≈
20.645728807
a
2
{displaystyle A=3{sqrt {25+10{sqrt {5}}}}a^{2}approx 20.645728807a^{2}}
体积:
V
=
1
4
(
15
+
7
5
)
a
3
≈
7.6631189606
a
3
{displaystyle V={frac {1}{4}}(15+7{sqrt {5}})a^{3}approx 7.6631189606a^{3}}
外接球半径:
r
u
=
a
3
4
(
1
+
5
)
≈
1.401258538
⋅
a
{displaystyle r_{u}=a{frac {sqrt {3}}{4}}left(1+{sqrt {5}}right)approx 1.401258538cdot a}
内切球半径:
r
i
=
a
1
2
5
2
+
11
10
5
≈
1.113516364
⋅
a
{displaystyle r_{i}=a{frac {1}{2}}{sqrt {{frac {5}{2}}+{frac {11}{10}}{sqrt {5}}}}approx 1.113516364cdot a}
中交球半径:
r
m
=
a
1
4
(
3
+
5
)
≈
1.309016994
⋅
a
{displaystyle r_{m}=a{frac {1}{4}}left(3+{sqrt {5}}right)approx 1.309016994cdot a}对偶多面体:正二十面体如果我们以正十二面体的形心为原点建立三维直角坐标系,那么其20个顶点可被描述为:
(0,±φ,±1/φ)
(±1/φ,0,±φ)
(±φ,±1/φ,0)
(±1,±1,±1)
其中φ = (1+√5)/2,是黄金分割数,也被写作τ,约等于1.618。
该正十二面体棱长为2/φ=√5–1。其外接球半径正好为√3。正十二面体有两种特殊的正交投影,分别正对着其一个顶点和一个正五边形面,对应着A2和H2考克斯特平面(英语:Coxeter plane)在透视投影中,如果如果投影中心正在正十二面体外接球正对其一面的一点,则你能得到其施莱格尔图像(英语:schlegel diagram),我们亦可以将其视为球面多面体(英语:Spherical polyhedron)而使用球极投影。这些方法也被用于可视化其四维类比正一百二十胞体,一个由120个全等的正十二面体组成的四维凸正多胞体。正十二面体在拓扑上与一系列三阶正镶嵌(顶点图为n3)有关:正十二面体在拓扑上还和其它阶的正五边形正镶嵌{5,n}(n≥3)有关:正十二面体可以通过不同类型的截取操作来得到一系列不同的半正多面体及其对偶,正二十面体,构成了正二十面体家族:正十二面体与4个星形半正多面体(英语:nonconvex uniform polyhedron)和上述3个复合半正多面体有同样的顶点分布:正十二面体的3个星形化体(英语:stellation)都是星形正多面体(开普勒-普索多面体):化学:
相关
- 啮齿目松鼠形亚目 Sciuromorpha 河狸亚目 Castorimorpha 鼠形亚目 Myomorpha 鳞尾松鼠亚目 Anomaluromorpha 豪猪亚目 Hystricomorpha啮齿目是哺乳动物中的一目,其特征为上颌和下颌
- 安全工程安全工程是一门确保工程系统提供足够安全程度的工程科学。安全工程和系统工程、工业工程及其子领域系统安全工程密切相关。安全工程可确保一个生命关键系统的行为符合需求,甚
- 墨西哥城墨西哥城(西班牙语:Ciudad de México 西班牙语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","C
- 酶催化酶促反应(又称酶催化)是指由一类被称为酶的特殊蛋白质所催化的化学反应。因为非催化反应的速率特别慢,故细胞中生物化学反应的催化作用就显得极重要。酶促反应的机制与其他类型
- 农艺学农学,狭义上专指农艺学(英语:Agronomy)是研究与农作物生产相关领域的科学,包括作物生长发育规律及其与外界环境条件的关系、病虫害防治、土壤与营养、种植制度、遗传育种等领域。
- 圣菲圣菲(英语:Santa Fe,纳瓦霍语:Yootó),是美国新墨西哥州的州府,它的名字来自于西班牙语,是“神圣的信仰”的意思。2000年人口普查时它有62,203居民。它也是圣菲县的政府所在地。为了
- 依泽替米贝依泽替米贝(英语:Ezetimibe) (/ɛˈzɛtᵻmɪb/) 是一种用来降低血清胆固醇浓度的药物。其作用机理为抑制小肠内胆固醇的吸收。当患者对其他抗高脂血症药物不耐受时,依泽替米贝可
- 1182年重要事件及趋势重要人物
- 春香传《春香传》(춘향전)是朝鲜半岛著名的爱情故事,数百年来一直都在当地乃至东亚地区流传。春香歌是朝鲜半岛传统说唱艺术盘索里的代表节目之一,也曾多次改编成电影。中国亦曾把此剧
- 财务省财务省(日语:財務省/ざいむしょう Zaimu shō ?,英文译名:Ministry of Finance)是日本中央省厅之一,首长为财务大臣。英语简称为MOF(日语:モフ)。前身为大藏省,2001年1月6日随着中央