首页 >
相交
✍ dations ◷ 2025-08-10 20:51:16 #相交
在数学中,相交是两个几何图形之间关系的一种。两个图形相交是指它们有公共的部分,或者说同时属于两者的点的集合不是空集。若两个几何图形在某个地方有且只有一个交点,则可以称为相切而不是相交。如果两个图形完全重合,则一般不称为相交。集合论中,两个集合相交是指它们的交集不是空集。在欧几里得平面上,两条直线要么平行,要么相交,要么重合。这时欧几里得第五公设的推论。相交的两条直线恰好有一个交点。在非欧几何中,按几何特性(曲率),可以分为两类。罗巴切夫斯基几何中两条直线要么平行,要么相交,但平行线不止一条。黎曼几何中两条直线总是相交。三维空间或更高维空间中,两条直线相交则必定共面。欧几里得几何中,同一平面上的两个圆之间的关系有四种:相离、相切、相容和相交。相离指两圆没有交点而且没有一个圆在另一个圆内部。相切是指两圆只有一个交点。相交是指两圆有多于一个交点。相容是指两圆没有交点且一个圆在另一个内部。两个圆相交当且仅当两个圆心之间的距离严格小于两圆的半径之和,并严格大于两圆的半径之差。在平面解析几何中,设两条直线的方程为:那么
(
D
1
)
{displaystyle ({mathcal {D}}_{1})}
与
(
D
2
)
{displaystyle ({mathcal {D}}_{2})}
相交当且仅当行列式:对于两圆相交,设两个圆的方程是:那么
(
C
1
)
{displaystyle ({mathcal {C}}_{1})}
与
(
C
2
)
{displaystyle ({mathcal {C}}_{2})}
相交当且仅当:由于行列式:
|
3
5
6
−
1
|
=
−
33
≠
0
{displaystyle {begin{vmatrix}3&5\6&-1end{vmatrix}}=-33neq 0}
,两直线相交。交点为
(
1
,
3
)
{displaystyle (1,3)}
。由于行列式:
|
3
5
6
10
|
=
0
{displaystyle {begin{vmatrix}3&5\6&10end{vmatrix}}=0}
,两直线不相交(实际上平行)。这时两个圆心的距离是:
[
1
−
(
−
3
)
]
2
+
[
−
4
−
(
−
1
)
]
2
=
5
{displaystyle {sqrt {^{2}+^{2}}}=5}
,
|
6
−
2
|
<
5
<
|
6
+
2
|
{displaystyle |6-2|<5<|6+2|}
,因此两圆相交。
相关
- 退伍军人杆菌Legionella adelaidensis Legionella anisa Legionella beliardensis Legionella birminghamensis Legionella bozemanii Legionella brunensis Legionella busanensis Legi
- 神经病学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学神经内科(neurology)是医学的一个分支,专
- 磺胺磺胺(Sulfanilamide),即对氨基苯磺酰胺,是一种具有药用价值的有机物,最早在1908年由奥地利化学家保罗·雅各布·约瑟夫·杰尔莫(Paul Josef Jakob Gelmo)合成,并在1909年获得专利权
- 1类致癌物对人类有确认的致癌性的物质、混合物和接触场合被国际癌症研究机构列为1类致癌物。这里的有些物质尽管没有特别充分的致癌性证据,但有足够的证据证明它们对动物致癌,而且能从
- 食品研究食品研究 是专门研究食物与科学、艺术、历史和社会等领域联系的学科。它与其他 有关食物的学科(例如营养学、农业,以及美食学和烹饪艺术)最大的分别,是在于它不是去研究食物原料
- 巴西利卡塔巴西利卡塔(意大利语:Basilicata,意大利语发音:)亦称卢卡尼亚(Lucania),是意大利南部的一个大区,东、西分别与坎帕尼亚、普利亚相邻,南边是卡拉布里亚,有小段海岸线连接第勒尼安海,另一
- 聚胞动物聚胞动物(学名:Choanozoa)是真核域后鞭毛生物的一个演化支,包含领鞭毛虫和各种动物。领鞭毛虫和动物作为旁系群,对动物起源的探究有着重大意义。该演化支在2015年由格雷厄姆·巴
- 社会建构社会建构主义(social constructionism)是由20世纪著名的思想家米歇尔·福柯在其《性史》第一卷中提出的。社会建构主义认为,性并不是一种独立于外界条件的观念,而是文化建构的结
- 菌褶蕈褶(英语:lamella, gill),又称菌褶,是担子菌门真菌子实体(担子果)的菌盖内侧的脊状突起,多条脊状突起以蕈柄为中心,一般形成放射状的排列。蕈褶表面有子实层,是担孢子产生之处,子实层
- 罗马奥运会第十七届夏季奥林匹克运动会(英语:the Games of the XVII Olympiad,法语:les Jeux de la XVIIe Olympiade,意大利语:i Giochi della XVII Olimpiade),于1960年8月25日至9月11日在意