黎曼积分

✍ dations ◷ 2025-07-01 23:36:52 #积分的定义,伯恩哈德·黎曼

牛顿 · 莱布尼兹 · 柯西 · 魏尔斯特拉斯  · 黎曼 · 拉格朗日 · 欧拉 · 帕斯卡 · 海涅(英语:Eduard Heine) · 巴罗 · 波尔查诺 · 狄利克雷 · 格林 · 斯托克斯 · 若尔当 · 达布 · 傅里叶 · 拉普拉斯 · 雅各布·伯努利 · 约翰·伯努利 · 阿达马 · 麦克劳林 · 迪尼 · 沃利斯 · 费马 · 达朗贝尔 · 黑维塞 · 吉布斯 · 奥斯特罗格拉德斯基 · 刘维尔 · 棣莫弗 · 格雷果里 · 玛达瓦(英语:Madhava of Sangamagrama) · 婆什迦罗第二 · 阿涅西 · 阿基米德

从无穷小量分析来理解曲线(英语:Analyse des Infiniment Petits pour l'Intelligence des Lignes Courbes) · 分析学教程(英语:Cours d'Analyse) · 无穷小分析引论 · 用无穷级数做数学分析(英语:De analysi per aequationes numero terminorum infinitas) · 流形上的微积分(英语:Calculus on Manifolds (book)) · 微积分学教程 · 纯数学教程(英语:A Course of Pure Mathematics) · 机械原理方法论(英语:The Method of Mechanical Theorems)

在实分析中,由黎曼创立的黎曼积分(英语:Riemann integral)首次对函数在给定区间上的积分给出了一个精确定义。黎曼积分在技术上的某些不足之处可由后来的黎曼-斯蒂尔杰斯积分和勒贝格积分得到修补。

让函数 f {\displaystyle f} , ] 的非负函数,我们想要计算 f ( x ) {\displaystyle f(x)} 的面积),可将区域 的面积以下面符号表示:

黎曼积分的基本概念就是对 -轴的分割越来越细,则其所对应的矩形面积和也会越来越趋近图形 的面积(参考右方第二张图)。同时请注意,如函数为负函数, f : R < 0 {\displaystyle f:\mapsto \mathbb {R} _{<0}} 、、之间的大小关系如何,以上关系式都成立。

黎曼积分可推广到值属于 n {\displaystyle n} 维空间 R n {\displaystyle \mathbb {R} ^{n}} 的函数。积分是线性定义的,即如果 f = ( f 1 , , f n ) {\displaystyle \mathbf {f} =(f_{1},\dots ,f_{n})} ,则 f = ( f 1 , , f n ) {\displaystyle \int \mathbf {f} =(\int f_{1},\,\dots ,\int f_{n})} 。特别地,由于复数是实数向量空间,故值为复数的函数也可定义积分。

黎曼积分只定义在有界区间上,扩展到无界区间并不方便。可能最简单的扩展是通过极限来定义积分,即如同反常积分(improper integral)一样。我们可以令

不幸的是,这并不是很合适。平移不变性(如果把一个函数向左或向右平移,它的黎曼积分应该保持不变)丧失了。例如,令 f ( x ) = 1 {\displaystyle f(x)=1} x > 0 {\displaystyle x>0} f ( 0 ) = 0 {\displaystyle f(0)=0} f ( x ) = 1 {\displaystyle f(x)=-1} x < 0 {\displaystyle x<0} 。则对所有 x {\displaystyle x}

但如果我们将 f ( x ) {\displaystyle f(x)} 向右平移一个单位得到 f ( x 1 ) {\displaystyle f(x-1)} ,则对所有 x > 1 {\displaystyle x>1} ,我们得到

由于这是不可接受的,我们可以尝试定义:

此时,如果尝试对上面的 f {\displaystyle f} 积分,我们得到 + {\displaystyle +\infty } ,因为我们先使用了极限 b {\displaystyle b\to \infty } 。如果使用相反的极限顺序,我们得到 {\displaystyle -\infty }

这同样也是不可接受的,我们要求积分存在且与积分顺序无关。即使这满足,依然不是我们想要的,因为黎曼积分与一致极限不再具有可交换性。例如,令 f n ( x ) = 1 / n {\displaystyle f_{n}(x)=1/n} {\displaystyle } 上,其它域上等于0。对所有 n {\displaystyle n} f n d x = 1 {\displaystyle \int f_{n}\,dx=1} 。但 f n {\displaystyle f_{n}} 一致收敛于0,因此 lim f n {\displaystyle \lim f_{n}} 的积分是0。因此 f d x lim f n d x {\displaystyle \int f\,dx\not =\lim \int f_{n}\,dx} 。即使这是正确的值,可看出对于极限与普通积分可交换的重要准则对反常积分不适用。这限制了黎曼积分的应用。

一个更好的途径是抛弃黎曼积分而采用勒贝格积分。虽然勒贝格积分是黎曼积分的扩展这点看上去并不是显而易见,但不难证明每个黎曼可积函数都是勒贝格可积的,并且当二者都有定义时积分值也是一致的。

事实上黎曼积分的一个直接扩展是Henstock–Kurzweil积分。

扩展黎曼积分的另一种途径是替换黎曼累加定义中的因子 x i x i + 1 {\displaystyle x_{i}-x_{i+1}} ,粗略地说,这给出另一种意义上长度间距的积分。这是黎曼-斯蒂尔切斯积分所采用的方法。

相关

  • 西咪替丁西咪替丁(INN:cimetidine),也称甲氰咪胍、西米替丁或希美得定,商品名称为泰胃美(Tagamet),是一种组胺H2受体阻抗剂,主要用于抑制胃酸的分泌,并用于治疗胃灼热和消化道溃疡。在英国,西咪
  • 星座{{Otheruses|西洋占星术|subject=天文学上所指的[[天球名都不尽相同。星座一直没有统一规定的精确边界,直到1930年,国际天文学联合会为了统一繁杂的星座划分,用精确的边界把天
  • 威权主义威权主义(英语:Authoritarianism)或威权论在哲学中是一个政治哲学理论,其提出某个政府应要求民众绝对服从其权威,并限制个人的思想跟言论和行为自由。政府上的威权主义指权力集中
  • 葡甘露聚糖葡甘露聚糖是一种半纤维素,它是部分植物细胞壁的组成部分。作为一种水溶性多糖,它可以在水中形成高黏稠度溶液,与半乳甘露聚糖较为相似。葡甘露聚糖是一种常用的食品添加剂,用来
  • 尾脂腺尾脂腺是鸟类的一种皮肤衍生物,为羽尾基背部的皮下,是一种全泌腺。尾脂腺的分泌物主要是一种能被苏木精染色的颗粒,一般鸟类用喙啄取将其涂抹在羽毛及角质鳞片上,起到保护的作用
  • 郍句郍句,南宋末年云南东部、广西西部的自杞国末代国王。郍句为防备蒙古修建滇东长城。1253年,蒙古帝国忽必烈和兀良合台、阿术父子率军十万南征云南,丽江主阿良不战而降,大理国皇帝
  • 雍道晞雍道晞(5世纪-500年),南朝时巴西郡起事领袖。南齐永元二年(500年)二月在巴西郡(今四川阆中)率众万余人起事,自称镇西将军,年号建义。进攻巴西郡城,将太守鲁休烈和县令李膺困在城内。三
  • 贲德贲德(1938年4月-),吉林省九台市人。中国雷达专家。曾任信息产业部电子14所副所长,14所科学技术协会主席。现任南京航空航天大学信息科学与技术学院院长,金陵科技学院双聘院士。19
  • F·保罗·威尔逊弗朗西斯·保罗·威尔逊(Francis Paul Wilson;1946年5月17日-)是一名美国科幻、恐怖小说家。他是洛夫克拉夫特的粉丝,作品一定程度上受洛夫克拉夫特的影响。他笔下最著名的角色是
  • 山阳小野田市山阳小野田市(日语:山陽小野田市/さんようおのだし  */?)是位于山口县西南部的市。于2005年3月22日,由小野田市与厚狭郡山阳町合并而成,城市名称直接取合并前两行政区的名字相连