黎曼积分

✍ dations ◷ 2025-05-19 19:46:39 #积分的定义,伯恩哈德·黎曼

牛顿 · 莱布尼兹 · 柯西 · 魏尔斯特拉斯  · 黎曼 · 拉格朗日 · 欧拉 · 帕斯卡 · 海涅(英语:Eduard Heine) · 巴罗 · 波尔查诺 · 狄利克雷 · 格林 · 斯托克斯 · 若尔当 · 达布 · 傅里叶 · 拉普拉斯 · 雅各布·伯努利 · 约翰·伯努利 · 阿达马 · 麦克劳林 · 迪尼 · 沃利斯 · 费马 · 达朗贝尔 · 黑维塞 · 吉布斯 · 奥斯特罗格拉德斯基 · 刘维尔 · 棣莫弗 · 格雷果里 · 玛达瓦(英语:Madhava of Sangamagrama) · 婆什迦罗第二 · 阿涅西 · 阿基米德

从无穷小量分析来理解曲线(英语:Analyse des Infiniment Petits pour l'Intelligence des Lignes Courbes) · 分析学教程(英语:Cours d'Analyse) · 无穷小分析引论 · 用无穷级数做数学分析(英语:De analysi per aequationes numero terminorum infinitas) · 流形上的微积分(英语:Calculus on Manifolds (book)) · 微积分学教程 · 纯数学教程(英语:A Course of Pure Mathematics) · 机械原理方法论(英语:The Method of Mechanical Theorems)

在实分析中,由黎曼创立的黎曼积分(英语:Riemann integral)首次对函数在给定区间上的积分给出了一个精确定义。黎曼积分在技术上的某些不足之处可由后来的黎曼-斯蒂尔杰斯积分和勒贝格积分得到修补。

让函数 f {\displaystyle f} , ] 的非负函数,我们想要计算 f ( x ) {\displaystyle f(x)} 的面积),可将区域 的面积以下面符号表示:

黎曼积分的基本概念就是对 -轴的分割越来越细,则其所对应的矩形面积和也会越来越趋近图形 的面积(参考右方第二张图)。同时请注意,如函数为负函数, f : R < 0 {\displaystyle f:\mapsto \mathbb {R} _{<0}} 、、之间的大小关系如何,以上关系式都成立。

黎曼积分可推广到值属于 n {\displaystyle n} 维空间 R n {\displaystyle \mathbb {R} ^{n}} 的函数。积分是线性定义的,即如果 f = ( f 1 , , f n ) {\displaystyle \mathbf {f} =(f_{1},\dots ,f_{n})} ,则 f = ( f 1 , , f n ) {\displaystyle \int \mathbf {f} =(\int f_{1},\,\dots ,\int f_{n})} 。特别地,由于复数是实数向量空间,故值为复数的函数也可定义积分。

黎曼积分只定义在有界区间上,扩展到无界区间并不方便。可能最简单的扩展是通过极限来定义积分,即如同反常积分(improper integral)一样。我们可以令

不幸的是,这并不是很合适。平移不变性(如果把一个函数向左或向右平移,它的黎曼积分应该保持不变)丧失了。例如,令 f ( x ) = 1 {\displaystyle f(x)=1} x > 0 {\displaystyle x>0} f ( 0 ) = 0 {\displaystyle f(0)=0} f ( x ) = 1 {\displaystyle f(x)=-1} x < 0 {\displaystyle x<0} 。则对所有 x {\displaystyle x}

但如果我们将 f ( x ) {\displaystyle f(x)} 向右平移一个单位得到 f ( x 1 ) {\displaystyle f(x-1)} ,则对所有 x > 1 {\displaystyle x>1} ,我们得到

由于这是不可接受的,我们可以尝试定义:

此时,如果尝试对上面的 f {\displaystyle f} 积分,我们得到 + {\displaystyle +\infty } ,因为我们先使用了极限 b {\displaystyle b\to \infty } 。如果使用相反的极限顺序,我们得到 {\displaystyle -\infty }

这同样也是不可接受的,我们要求积分存在且与积分顺序无关。即使这满足,依然不是我们想要的,因为黎曼积分与一致极限不再具有可交换性。例如,令 f n ( x ) = 1 / n {\displaystyle f_{n}(x)=1/n} {\displaystyle } 上,其它域上等于0。对所有 n {\displaystyle n} f n d x = 1 {\displaystyle \int f_{n}\,dx=1} 。但 f n {\displaystyle f_{n}} 一致收敛于0,因此 lim f n {\displaystyle \lim f_{n}} 的积分是0。因此 f d x lim f n d x {\displaystyle \int f\,dx\not =\lim \int f_{n}\,dx} 。即使这是正确的值,可看出对于极限与普通积分可交换的重要准则对反常积分不适用。这限制了黎曼积分的应用。

一个更好的途径是抛弃黎曼积分而采用勒贝格积分。虽然勒贝格积分是黎曼积分的扩展这点看上去并不是显而易见,但不难证明每个黎曼可积函数都是勒贝格可积的,并且当二者都有定义时积分值也是一致的。

事实上黎曼积分的一个直接扩展是Henstock–Kurzweil积分。

扩展黎曼积分的另一种途径是替换黎曼累加定义中的因子 x i x i + 1 {\displaystyle x_{i}-x_{i+1}} ,粗略地说,这给出另一种意义上长度间距的积分。这是黎曼-斯蒂尔切斯积分所采用的方法。

相关

  • 童年期童年是从出生跨越到青春期的年龄段。童年由两个阶段组成:前运算阶段(preoperational stage)和具体运算阶段(concrete operational stage)。在发展心理学中,童年被分为四个发展阶段
  • 1449年约前1445年,古埃及法老图特摩斯三世打败了米坦尼国王,夺占米坦尼王国位于幼发拉底河西岸的土地。
  • 土耳其安哥拉猫土耳其安哥拉猫(Turkey angora),是长毛猫的一种,起源于15世纪,在波斯猫风行之前,该猫一直是最受欢迎的猫的品种。现在,这种猫的数量已经出现减少。土耳其安哥拉猫的传统颜色为白
  • 经济扩张经济扩张(英语:economic expansion)是经济活动水平以及可用的商品和服务水平的提高。它是一个以实际GDP增长来衡量的经济增长时期。解释经济扩张与收缩之间的总经济活动波动是
  • 扎比内·比朔夫扎比内·比朔夫(德语:Sabine Bischoff,1958年5月21日-2013年3月6日),德国女子击剑选手,曾获1984年夏季奥林匹克运动会花剑团体金牌。2013年3月6日因病逝世。
  • 禹长春禹长春(1898年4月8日-1959年8月10日),日本名须永长春,韩国农学家、植物学家。他生于日本东京,后来回到韩国。釜山有其纪念馆。禹长春父亲是韩国人,母亲是日本人。1916年进入东京大
  • OSE列车OSE列车(希腊语:ΤραινΟΣΕ Α.Ε.,读作“trenosé”)是希腊一间铁路公司,营运所有希腊铁路组织铁路线上的乘客和货运列车。OSE列车在2017年9月被意大利国家铁路收购。较早
  • 几何尺寸和公差几何尺寸与公差(),是一个代码,又称为GD&T或GDAT,使用的工程图纸和电脑生成的3D实体模型的名义明确描述几何及允许偏差。几何尺寸与公差是用来定义几何形状的零件和组件,以定义允许
  • 天主教印第安纳的拉斐特教区天主教印第安纳的拉斐特教区(拉丁语:Dioecesis Lafayettensis in Indiana、英语:Roman Catholic Diocese of Lafayette-in-Indiana)是美国一个罗马天主教教区,属印第安纳波利斯总
  • 巴加尔巴加尔(Baggar),是印度拉贾斯坦邦Jhunjhunun县的一个城镇。总人口14648(2001年)。该地2001年总人口14648人,其中男性8133人,女性6515人;0—6岁人口2070人,其中男1103人,女967人;识字率7