黎曼积分

✍ dations ◷ 2025-07-06 03:43:25 #积分的定义,伯恩哈德·黎曼

牛顿 · 莱布尼兹 · 柯西 · 魏尔斯特拉斯  · 黎曼 · 拉格朗日 · 欧拉 · 帕斯卡 · 海涅(英语:Eduard Heine) · 巴罗 · 波尔查诺 · 狄利克雷 · 格林 · 斯托克斯 · 若尔当 · 达布 · 傅里叶 · 拉普拉斯 · 雅各布·伯努利 · 约翰·伯努利 · 阿达马 · 麦克劳林 · 迪尼 · 沃利斯 · 费马 · 达朗贝尔 · 黑维塞 · 吉布斯 · 奥斯特罗格拉德斯基 · 刘维尔 · 棣莫弗 · 格雷果里 · 玛达瓦(英语:Madhava of Sangamagrama) · 婆什迦罗第二 · 阿涅西 · 阿基米德

从无穷小量分析来理解曲线(英语:Analyse des Infiniment Petits pour l'Intelligence des Lignes Courbes) · 分析学教程(英语:Cours d'Analyse) · 无穷小分析引论 · 用无穷级数做数学分析(英语:De analysi per aequationes numero terminorum infinitas) · 流形上的微积分(英语:Calculus on Manifolds (book)) · 微积分学教程 · 纯数学教程(英语:A Course of Pure Mathematics) · 机械原理方法论(英语:The Method of Mechanical Theorems)

在实分析中,由黎曼创立的黎曼积分(英语:Riemann integral)首次对函数在给定区间上的积分给出了一个精确定义。黎曼积分在技术上的某些不足之处可由后来的黎曼-斯蒂尔杰斯积分和勒贝格积分得到修补。

让函数 f {\displaystyle f} , ] 的非负函数,我们想要计算 f ( x ) {\displaystyle f(x)} 的面积),可将区域 的面积以下面符号表示:

黎曼积分的基本概念就是对 -轴的分割越来越细,则其所对应的矩形面积和也会越来越趋近图形 的面积(参考右方第二张图)。同时请注意,如函数为负函数, f : R < 0 {\displaystyle f:\mapsto \mathbb {R} _{<0}} 、、之间的大小关系如何,以上关系式都成立。

黎曼积分可推广到值属于 n {\displaystyle n} 维空间 R n {\displaystyle \mathbb {R} ^{n}} 的函数。积分是线性定义的,即如果 f = ( f 1 , , f n ) {\displaystyle \mathbf {f} =(f_{1},\dots ,f_{n})} ,则 f = ( f 1 , , f n ) {\displaystyle \int \mathbf {f} =(\int f_{1},\,\dots ,\int f_{n})} 。特别地,由于复数是实数向量空间,故值为复数的函数也可定义积分。

黎曼积分只定义在有界区间上,扩展到无界区间并不方便。可能最简单的扩展是通过极限来定义积分,即如同反常积分(improper integral)一样。我们可以令

不幸的是,这并不是很合适。平移不变性(如果把一个函数向左或向右平移,它的黎曼积分应该保持不变)丧失了。例如,令 f ( x ) = 1 {\displaystyle f(x)=1} x > 0 {\displaystyle x>0} f ( 0 ) = 0 {\displaystyle f(0)=0} f ( x ) = 1 {\displaystyle f(x)=-1} x < 0 {\displaystyle x<0} 。则对所有 x {\displaystyle x}

但如果我们将 f ( x ) {\displaystyle f(x)} 向右平移一个单位得到 f ( x 1 ) {\displaystyle f(x-1)} ,则对所有 x > 1 {\displaystyle x>1} ,我们得到

由于这是不可接受的,我们可以尝试定义:

此时,如果尝试对上面的 f {\displaystyle f} 积分,我们得到 + {\displaystyle +\infty } ,因为我们先使用了极限 b {\displaystyle b\to \infty } 。如果使用相反的极限顺序,我们得到 {\displaystyle -\infty }

这同样也是不可接受的,我们要求积分存在且与积分顺序无关。即使这满足,依然不是我们想要的,因为黎曼积分与一致极限不再具有可交换性。例如,令 f n ( x ) = 1 / n {\displaystyle f_{n}(x)=1/n} {\displaystyle } 上,其它域上等于0。对所有 n {\displaystyle n} f n d x = 1 {\displaystyle \int f_{n}\,dx=1} 。但 f n {\displaystyle f_{n}} 一致收敛于0,因此 lim f n {\displaystyle \lim f_{n}} 的积分是0。因此 f d x lim f n d x {\displaystyle \int f\,dx\not =\lim \int f_{n}\,dx} 。即使这是正确的值,可看出对于极限与普通积分可交换的重要准则对反常积分不适用。这限制了黎曼积分的应用。

一个更好的途径是抛弃黎曼积分而采用勒贝格积分。虽然勒贝格积分是黎曼积分的扩展这点看上去并不是显而易见,但不难证明每个黎曼可积函数都是勒贝格可积的,并且当二者都有定义时积分值也是一致的。

事实上黎曼积分的一个直接扩展是Henstock–Kurzweil积分。

扩展黎曼积分的另一种途径是替换黎曼累加定义中的因子 x i x i + 1 {\displaystyle x_{i}-x_{i+1}} ,粗略地说,这给出另一种意义上长度间距的积分。这是黎曼-斯蒂尔切斯积分所采用的方法。

相关

  • 导游导游是旅游活动中的一位角色人物,是旅游业中的一个前线职业。在旅行团中的前线服务员有旅游车司机、领队及导游有时候会有摄影师。领队:是当地接待单位的前线代表,负责带领团员
  • 双名制命名法二名法(英语:Binomial Nomenclature,Binominal Nomenclature 或 Binary Nomenclature),又称双名法,依照生物学上对生物种类的命名规则,所给定的学名之形式,自林奈《植物种志》(1753
  • Smsub2/subOsub3/sub三氧化二钐(化学式:Sm2O3 ),又称氧化钐(Ⅲ),是钐的氧化物。三氧化二钐可借由直接加热钐至150℃时制得:4 Sm + 3 O2 → 2 Sm2O3三氧化二钐也可借由加热碳酸钐、硝酸钐、草酸钐后制得
  • 燕巢区燕巢区(台湾话:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Lato,"Helvetica Neue",Helvetica,Arial,sans-serif} Iàn-
  • 熊赐履熊赐履(1635年-1709年),字敬修,一字青岳,号素九,别号愚斋,湖北孝感人,祖籍江西南昌,明末清初理学名家、政治人物,官至东阁大学士兼吏部尚书。以康熙皇帝老师的名义,曾经拉拢过顾炎武,有书
  • 文艺复兴全盛期文艺复兴全盛期指的是艺术史上意大利文艺复兴的全盛时期,这一时期起始于达芬奇《最后的晚餐》绘成、洛伦佐·德·美第奇逝世的1490年代,结束于1527年的罗马之劫。“文艺复兴全
  • 美童公学美童公学(英语:Shanghai American School),又名上海美国学校,是1912年至1949年上海一间主要面向美国侨民子女开设的国际学校。原校址位于上海市徐汇区衡山路10号,现为七〇四研究所
  • 瓦莱达奥斯塔大区瓦莱达奥斯塔(意大利语:Valle d'Aosta,法语:Vallée d'Aoste;阿皮坦语:Vâl d'Aoûta,Valle意为山谷)是意大利西北部的一个多山的大区,也是意大利面积最小的大区,面积3,263平方公里,人
  • 王琴堂 (邯郸清末进士)王琴堂(1859年-1932年),字韵泉,号啸山,邯郸城里人,为清代邯郸最后两名进土之一。王琴堂一生行状颇具典型性,他接受私塾教育,后科举入仕,被清廷派去留洋考察,出任过民国官员,后由官入商,积
  • 沙博理沙博理(英语:Sidney Shapiro,1915年12月23日-2014年10月18日),犹太裔中国人,生于美国纽约,中华人民共和国翻译家、作家。其中文名取“博学明理”之意。1915年12月23日,沙博理生于美国