模形式

✍ dations ◷ 2025-11-06 02:53:16 #模形式
在数学上,模形式(Modular form)是一种解析函数,这种函数的只接受来自复数平面内上半平面中的值,并且这种函数在一个在模型群(英语:Modular group)的群运算之下,会变成某种类型的函数方程,并且通过函数计算出的值也会呈现出某个增长趋势。模形式理论属于数论的范畴。模形式也出现在其他领域,例如代数拓扑和弦理论。模形式理论是更广泛的自守形式理论的特例。自守形式理论的发展大致可分成三期:一个模形式可视为从所有格 Λ ⊂ C {displaystyle Lambda subset mathbb {C} } (即: C {displaystyle mathbb {C} } 中的离散加法子群,使得其商群紧致)的集合映至 C {displaystyle mathbb {C} } 的函数 F {displaystyle F} ,使之满足下述条件:当 k = 0 {displaystyle k=0} ,条件二表明 F ( Λ ) {displaystyle F(Lambda )} 仅决定于 Λ {displaystyle Lambda } 在相似变换下的等价类。这是重要的特例,但是权为零的模形式必为常数函数。若去掉条件三,并容许函数有极点,则存在非常数的例子,称作模函数。这个状况可以与射影空间(英语:Projective space) P ( V ) {displaystyle mathbb {P} (V)} 作类比:对于射影空间,我们欲寻找向量空间 V {displaystyle V} 上对座标的多项式函数 F {displaystyle F} ,并满足 F ( c v ) = F ( v ) {displaystyle F(cv)=F(v)} ;不幸的是,这种函数必为常数。一种办法是容许有分母(即考虑有理函数),则满足条件的是分子、分母为同次数齐次多项式的有理函数。另一种办法则是修改条件 F ( c v ) = F ( v ) {displaystyle F(cv)=F(v)} 为 F ( c v ) = c k F ( v ) {displaystyle F(cv)=c^{k}F(v)} ,则满足此条件的函数为 k {displaystyle k} 次齐次多项式,对每个固定的 k {displaystyle k} ,这些函数构成有限维向量空间。借着考虑所有可能的 k {displaystyle k} ,我们可以找出构造 P ( V ) {displaystyle mathbb {P} (V)} 上的有理函数所需之分子与分母。既然 k {displaystyle k} 次齐次多项式在 P ( V ) {displaystyle mathbb {P} (V)} 上并非真正的函数,该如何从几何上诠释?代数几何给出了一个答案:它们是 P ( V ) {displaystyle mathbb {P} (V)} 上某个层 O ( k ) {displaystyle {mathcal {O}}(k)} 的截面。模形式的情形也类似,但考虑的不是 P ( V ) {displaystyle mathbb {P} (V)} ,而是某个模空间。每个格 Λ ⊂ C {displaystyle Lambda subset mathbb {C} } 都决定一条复椭圆曲线 C / Λ {displaystyle mathbb {C} /Lambda } ;两个格给出的椭圆曲线同构的充要条件是两个格之间差一个非零复数的倍数。因此模函数可以看作是复椭圆曲线的模空间上的函数。例如椭圆曲线的j-不变量(英语:j-invariant)就是模函数。模形式可视作模空间上某些线丛的截面。每个格在乘上某个非零复数倍数后皆可表成 Λ = ⟨ 1 , z ⟩ ( I m ( z ) > 0 ) {displaystyle Lambda =langle 1,zrangle quad (mathrm {Im} (z)>0)} 。对一模形式 F {displaystyle F} ,置 f ( z ) := F ( ⟨ 1 , z ⟩ ) {displaystyle f(z):=F(langle 1,zrangle )} 。模形式的第二个条件可改写成函数方程:对所有 a , b , c , d ∈ Z {displaystyle a,b,c,din mathbb {Z} } 且 a d − b c = 1 {displaystyle ad-bc=1} (即模群(英语:Modular group) Γ := S L ( 2 , Z ) {displaystyle Gamma :=mathrm {SL} (2,mathbb {Z} )} 之定义),有例如,取 a = d = 0 , b = − 1 , c = 1 {displaystyle a=d=0,b=-1,c=1} :如果上述方程仅对 S L ( 2 , Z ) {displaystyle mathrm {SL} (2,mathbb {Z} )} 内的某个有限指数子群 Γ ′ {displaystyle Gamma '} 成立,则称 F {displaystyle F} 为对 Γ ′ {displaystyle Gamma '} 的模形式。最常见的例子是同余子群 Γ ( N ) := { g ∈ Γ : g ≡ I mod N } {displaystyle Gamma (N):={gin Gamma :gequiv Imod N}} ,以下将详述。令 N {displaystyle N} 为正整数,相应的模群(英语:congruence subgroup) Γ 0 ( N ) {displaystyle Gamma _{0}(N)} 定义为令 k {displaystyle k} 为正整数,权为 k {displaystyle k} 的 N {displaystyle N} 级(或级群为 Γ 0 ( N ) {displaystyle Gamma _{0}(N)} )模形式定义为一个上半平面上的全纯函数 f {displaystyle f} ,对任何及任何属于上半平面的 z {displaystyle z} ,有而且 f {displaystyle f} 在尖点全纯。所谓尖点,是 Q ∪ { + i ∞ } {displaystyle mathbb {Q} cup {+iinfty }} 在 Γ 0 ( N ) {displaystyle Gamma _{0}(N)} 作用下的轨道。例如当 N = 1 {displaystyle N=1} 时, + i ∞ {displaystyle +iinfty } 代表了唯一的尖点。模形式在尖点 p {displaystyle p} 全纯,意谓 z → p {displaystyle zrightarrow p} 时 f {displaystyle f} 有界。当此尖点为 + i ∞ {displaystyle +iinfty } 时,这等价于 f {displaystyle f} 有傅立叶展开式其中 x = exp ⁡ ( 2 π i z ) {displaystyle x=exp(2pi iz)} 。对于其它尖点,同样可藉座标变换得到傅立叶展开。若对每个尖点都有 c ( 0 ) = 0 {displaystyle c(0)=0} ,则称之为尖点形式(德文:Spitzenform)。使得 c ( n ) ≠ 0 {displaystyle c(n)neq 0} 的最小 n {displaystyle n} 称作 f {displaystyle f} 在该尖点的阶。以上定义的模形式有时也称为整模形式,以区分带极点的一般情形(如j-不变量)。另一种的推广是考虑某类函数 j ( a , b , c , d , z ) {displaystyle j(a,b,c,d,z)} ,并将函数方程改写为上式所取的 j ( a , b , c , d , z ) := ( c z + d ) {displaystyle j(a,b,c,d,z):=(cz+d)} 称为自守因子。若另取适当的 j {displaystyle j} ,则在此框架下亦可探讨戴德金η函数,这是权等于1/2的模形式。例如:一个权等于 k {displaystyle k} 、 N {displaystyle N} 级、nebentypus为 χ {displaystyle chi } ( χ {displaystyle chi } 是模 N {displaystyle N} 的一个狄利克雷特征)是定义于上半平面,并具下述性质的全纯函数:对任意及属于上半平面的 z {displaystyle z} ,有函数方程此外, f {displaystyle f} 必须在尖点全纯。模形式最简单的例子是艾森斯坦级数:对每个偶数 k > 2 {displaystyle k>2} ,定义(条件 k > 2 {displaystyle k>2} 用于确立收敛性)所谓 R n {displaystyle mathbb {R} ^{n}} 中的偶单位模格 L {displaystyle L} ,是指由一个行列式等于一的 n {displaystyle n} 阶矩阵的行向量展成之格,并使得每个 L {displaystyle L} 中的向量长度均为偶数。根据普瓦松求和公式,此时对应的Theta函数是权 = n / 2 {displaystyle =n/2} 的模形式。偶单位模格的构造并不容易,以下是方法之一:令 n {displaystyle n} 为8的倍数,并考虑所有向量 v ∈ R n {displaystyle vin mathbb {R} ^{n}} ,使得 2 v {displaystyle 2v} 的座标均为奇数或均为偶数,且 v {displaystyle v} 的各座标总和为奇数。由此构成的格写作 L n {displaystyle L_{n}} 。当 n = 8 {displaystyle n=8} ,此格由根系 E 8 {displaystyle E_{8}} 的根生成。虽然 L 8 × L 8 {displaystyle L_{8}times L_{8}} 与 L 1 6 {displaystyle L_{1}6} 并不相似,由于权 = 8 {displaystyle =8} 的模形式只有一个(至多差一个常数倍),遂得到约翰·米尔诺发现: R 16 {displaystyle mathbb {R} ^{16}} 对这两个格的商空间给出两个16维环面,彼此不相等距同构,但它们的拉普拉斯算子有相同的特征值(计入重数)。戴德金η函数定义为模判别式 Δ ( z ) = η ( z ) 24 {displaystyle Delta (z)=eta (z)^{24}} 是权 = 12 {displaystyle =12} 的模形式。拉马努金有一个著名的猜想:在 Δ ( z ) {displaystyle Delta (z)} 的傅立叶展开式中,对任一素数 p {displaystyle p} , q p {displaystyle q^{p}} 的系数的绝对值恒 ≤ 2 p 11 / 2 {displaystyle leq 2p^{11/2}} 。此猜想最后由德利涅证明。上述诸例点出了模形式与若干古典数论问题的联系,例如以二次型表示整数以及整数分拆问题。赫克算子(英语:Hecke operator)理论阐释了模形式与数论的关键联系,同时也联系了模形式与表示理论。模函数的概念还能做一些推广。例如,可以去掉全纯条件:马斯形式(英语:Maass cusp form)是上半平面的拉普拉斯算子的特征函数,但并非全纯函数。此外,可以考虑 S L ( 2 , Z ) {displaystyle SL(2,mathbb {Z} )} 以外的群。希尔伯特模形式是 n {displaystyle n} 个变元的函数,每个变元都属于上半平面。其函数方程则由分布于某个全实域的二阶方阵来定义。若以较大的辛群取代 S L ( 2 ) {displaystyle SL(2)} ,便得到西格尔模形式。模形式与椭圆曲线相关,而西格尔模形式则涉及更广义的阿贝尔簇(英语:Abelian variety)。自守形式的概念可用于一般的李群。

相关

  • 玻利维亚出血热马秋波病毒玻利维亚出血热(英语:Bolivian hemorrhagic fever,简称BHF,别名有black typhus、Ordog Fever等)是一类由感染马秋波病毒引起的病毒性出血热。该疾病为人畜共通传染病,起
  • 利己主义利己主义或自我主义是凡事只为自己或对自己有关系的团体着想的行为。与利他主义相反。单在道德判断上,自己的幸福快乐比别人的来得重要,所以利己主义在许多思想和文化中是一种
  • 阿尔波特·班杜拉阿尔波特·班杜拉(英语:Albert Bandura,1925年12月4日-),出生于加拿大Mundare,著名心理学家,以其社会学习论著称。班杜拉毕业于不列颠哥伦比亚大学 ,1951年获得爱荷华大学硕士学位,次
  • 植物生殖植物为了延续后代,因此要生生不息不断的繁衍后代,此过程中可以有性繁殖或无性繁殖两大类方式进行。有性生殖由融合产生的后代配子,产生的后代从父或父母的基因不同。无性繁殖利
  • 劳伦斯·奥利维尔劳伦斯·奥利维尔,奥利维尔男爵,OM(英语:Laurence Kerr Olivier, Baron Olivier,/ˈlɒrəns ˈkɜːrr əˈlɪvieɪ/,1907年5月22日-1989年7月11日),英国电影演员、导演和制片人,奥
  • 新柏拉图主义新柏拉图主义(Neo-Platonism),是公元3世纪由亚历山大城的普罗提诺发展出的哲学派别,是古希腊文化末期最重要的哲学流派,对基督教神学产生了重大影响。该流派主要基于柏拉图的学说
  • 学院哥特式学院哥特式建筑(Collegiate Gothic)是哥特复兴式建筑的一种,吸取了英格兰的都铎式建筑和哥特式建筑的特色。它在19世纪末至20世纪初流行于美国和加拿大的大学和学院中,因而得名
  • 共主邦联共主邦联,又可译作君合国、身合国或人合国(英语:Personal union),是指两个或两个以上被国际承认的主权国家,共同拥戴同一位国家元首所组成的特殊的国与国关系。共主邦联和联邦制国
  • 子宫外膜子宫外膜(英语:perimetrium)或称子宫浆膜(serous coat of uterus)是指子宫的外部浆膜,相当于腹部的腹膜。它由腹膜脏层生长而出。
  • 火星样本取回任务火星样本取回任务是美国国家航空航天局及欧洲空间局的联合计划,从火星收集岩石及尘埃样本并且取回地球分析。这将会是第一个从另一个行星收集岩石样本的任务。不过,以前就已经