非完整系统

✍ dations ◷ 2024-12-23 05:25:56 #力学,经典力学,拉格朗日力学,哈密顿力学,物理学系统

在古典力学里,假如,一个系统有任何约束是非完整约束,则称此系统为非完整系统。非完整约束不是完整约束。完整约束可以用方程式表示为

这里, f {\displaystyle f} 是每一个粒子 P i {\displaystyle P_{i}} 之位置 x i {\displaystyle x_{i}} 和时间 t {\displaystyle t} 的函数。非完整约束不能够用上述方程式表示。

完整约束方程式与位置、时间有关,与速度无关。完整约束方程式可以很简易地除去指定的变数。假设变数 x d {\displaystyle x_{d}} 是完整约束函数 f k {\displaystyle f_{k}} 里的一个参数,现在指定除去 x d {\displaystyle x_{d}} 。重新编排上述约束方程式,求出表示 x d {\displaystyle x_{d}} 的函数 g k {\displaystyle g_{k}}

将函数 g k {\displaystyle g_{k}} 代入所有提到 x d {\displaystyle x_{d}} 的方程式。这样,可以除去所有指定变数 x d {\displaystyle x_{d}}

假设一个物理系统原本的自由度是 N {\displaystyle N} 。现在,将 h {\displaystyle h} 个完整约束作用于此系统。那么,这系统的自由度减少为 m = N h {\displaystyle m=N-h} 。可以用 m {\displaystyle m} 个独立广义座标 ( q 1 ,   q 2 ,   ,   q m ) {\displaystyle (q_{1},\ q_{2},\ \dots ,\ q_{m})} 来完全描述这系统的运动。座标的转换方程式可以表示如下:

换句话说,由于非完整约束无法依照上述方法,来除去其所含广义座标,完全描述非完整系统,所需要的广义座标数目,大于自由度。

约束有时可以用微分形式的约束方程式来表示。思考第 i {\displaystyle i} 个约束的微分形式的约束方程式:

这里, c i j {\displaystyle c_{ij}} c i {\displaystyle c_{i}} 分别为微分 d q j {\displaystyle dq_{j}} d t {\displaystyle dt} 的系数。

假若此约束方程式是可积分的。也就是说,有一个函数 f i ( q 1 ,   q 2 ,   q 3 ,   ,   q N ,   t ) = 0 {\displaystyle f_{i}(q_{1},\ q_{2},\ q_{3},\ \dots ,\ q_{N},\ t)=0} 的全微分满足下述等式:

那么,此约束是完整约束;否则,此约束是非完整约束。因此,所有的完整约束与某些非完整约束可以用微分形式的方程式来表示。不是所有的非完整约束都可以这样表示。含有广义速度的非完整约束就不能这样表示。所以,假若知道一个约束的微分形式的约束方程式,这约束到底是完整约束,还是非完整约束,需要看微分形式的约束方程式能否积分来决定。

表示非完整约束的方程式往往比较复杂。因此,非完整系统也比较难分析,只有简易一点的非完整系统能用形式论来分析。假如,一个非完整系统的约束可以用以下方程式表示:

则称此系统为半完整系统;这里, q ˙ j {\displaystyle {\dot {q}}_{j}} 是广义速度。

半完整系统可以用拉格朗日形式论来分析。更具体地说,分析半完整系统必须用到拉格朗日乘子 λ i {\displaystyle \lambda _{i}}

这里, λ i = λ i ( q 1 ,   q 2 ,   ,   q N ,   q ˙ 1 ,   q ˙ 2 ,   ,   q ˙ N ,   t ) {\displaystyle \lambda _{i}=\lambda _{i}(q_{1},\ q_{2},\ \dots ,\ q_{N},\ {\dot {q}}_{1},\ {\dot {q}}_{2},\ \dots ,\ {\dot {q}}_{N},\ t)} 是未知函数。

假设哈密顿原理成立,则下述方程式成立:

这里, L {\displaystyle L} 是拉格朗日量, t 1 {\displaystyle t_{1}} t 2 {\displaystyle t_{2}} 分别为积分的时间下限与上限。经过变分法运算,可以得到方程式

由于这 N {\displaystyle N} 个广义座标中,仍旧有 n {\displaystyle n} 个不独立广义座标,不能将拉格朗日方程式提取出来;必须加入拉格朗日乘子项目:

经过变分法运算,可以得到方程式

这里, F j {\displaystyle {\mathcal {F}}_{j}} 是广义力的 j {\displaystyle j} 分量:

虽然还有 n {\displaystyle n} 个不独立广义座标,仍旧可以调整 n {\displaystyle n} 加入的拉格朗日乘子,使总和公式内的每一个虚位移 δ q j {\displaystyle \delta q_{j}} 的系数都等于0。因此,

N {\displaystyle N} 个方程式加上 n {\displaystyle n} 个约束方程式,给予了 N + n {\displaystyle N+n} 个方程式来解 N {\displaystyle N} 个未知广义座标与 n {\displaystyle n} 个拉格朗日乘子。

非完整系统至少存在于以下三个状况:

相关

  • 革兰氏阳性球菌革兰氏阳性菌(英文:Gram Positive)是能够用革兰氏染色染成深蓝或紫色的细菌,而革兰氏阴性菌不能被染色(通常染作红色以对比)。它们细胞壁中含有较大量的肽聚糖,但经常缺乏革兰氏阴
  • 尼古丁尼古丁(英语:Nicotine),俗称烟碱,是一种发现于茄科植物的强效拟副交感神经生物碱,是香烟的主要化学成分和主要致瘾成分,属于兴奋剂的一种。尼古丁是一种烟碱型乙酰胆碱受体(英语:Nico
  • 威斯敏斯特体系威斯敏斯特体系(英语:Westminster system,也译为西敏制),是指沿循英国国会体制,奉行议会至上原则的议会民主制,以其所在威斯敏斯特宫为名。荷兰学者李帕特(Arend Lijphart)归类为“威
  • 惠宗元惠宗妥懽贴睦尔(蒙古语: ᠲᠣᠭᠠᠨᠲᠡᠮᠦᠷ,鲍培转写:toγan temür,西里尔字母:Тогоонтөмөр;1320年5月25日-1370年5月23日),清刊《元史》、清修《续资治通鉴》改译托
  • .mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
  • 威廉·切斯特·米诺威廉·切斯特·米诺(William Chester Minor,1834年6月22日-1920年3月26日),简称作W·C·米诺(W. C. Minor) ,美国外科医生、前军医与词典编纂者,思觉失调与精神分裂症患者,他在1872至1
  • 宁冈县宁冈县是原中国江西省吉安市下辖的一个县。元朝置永宁县,1914年改宁冈县。2000年5月11日,宁冈县被撤消,并入井冈山市,市人民政府驻厦坪镇。合并后的井冈山市归属吉安市管辖。宁
  • 曾纡曾纡(1073年-1135年),字公衮,一字公卷,晚号空青先生,建昌军南丰(今江西南丰)人。北宋宰相曾布第四子。熙宁六年出生,幼年学诗于母亲魏玩。以荫担任承务郎。绍圣年间任中弘词科。崇宁初
  • 卢卡斯·赫贾卢卡斯·赫贾(捷克语:Lukáš Hejda;1990年3月9日-)是一位捷克足球运动员。在场上的位置是后卫。他现在效力于捷克足球甲级联赛球队比尔森胜利足球俱乐部。他也代表捷克国家足球
  • 奥罗拉航空 (斯洛文尼亚)奥罗拉航空(Aurora Airlines)曾是一家总部位于卢布尔雅那的斯洛文尼亚航空公司。奥罗拉航空运营从德国各大城市出发前往科索沃的航班,因而其主要业务是代替科索沃航空来运营航