非完整系统

✍ dations ◷ 2025-10-24 04:19:43 #力学,经典力学,拉格朗日力学,哈密顿力学,物理学系统

在古典力学里,假如,一个系统有任何约束是非完整约束,则称此系统为非完整系统。非完整约束不是完整约束。完整约束可以用方程式表示为

这里, f {\displaystyle f} 是每一个粒子 P i {\displaystyle P_{i}} 之位置 x i {\displaystyle x_{i}} 和时间 t {\displaystyle t} 的函数。非完整约束不能够用上述方程式表示。

完整约束方程式与位置、时间有关,与速度无关。完整约束方程式可以很简易地除去指定的变数。假设变数 x d {\displaystyle x_{d}} 是完整约束函数 f k {\displaystyle f_{k}} 里的一个参数,现在指定除去 x d {\displaystyle x_{d}} 。重新编排上述约束方程式,求出表示 x d {\displaystyle x_{d}} 的函数 g k {\displaystyle g_{k}}

将函数 g k {\displaystyle g_{k}} 代入所有提到 x d {\displaystyle x_{d}} 的方程式。这样,可以除去所有指定变数 x d {\displaystyle x_{d}}

假设一个物理系统原本的自由度是 N {\displaystyle N} 。现在,将 h {\displaystyle h} 个完整约束作用于此系统。那么,这系统的自由度减少为 m = N h {\displaystyle m=N-h} 。可以用 m {\displaystyle m} 个独立广义座标 ( q 1 ,   q 2 ,   ,   q m ) {\displaystyle (q_{1},\ q_{2},\ \dots ,\ q_{m})} 来完全描述这系统的运动。座标的转换方程式可以表示如下:

换句话说,由于非完整约束无法依照上述方法,来除去其所含广义座标,完全描述非完整系统,所需要的广义座标数目,大于自由度。

约束有时可以用微分形式的约束方程式来表示。思考第 i {\displaystyle i} 个约束的微分形式的约束方程式:

这里, c i j {\displaystyle c_{ij}} c i {\displaystyle c_{i}} 分别为微分 d q j {\displaystyle dq_{j}} d t {\displaystyle dt} 的系数。

假若此约束方程式是可积分的。也就是说,有一个函数 f i ( q 1 ,   q 2 ,   q 3 ,   ,   q N ,   t ) = 0 {\displaystyle f_{i}(q_{1},\ q_{2},\ q_{3},\ \dots ,\ q_{N},\ t)=0} 的全微分满足下述等式:

那么,此约束是完整约束;否则,此约束是非完整约束。因此,所有的完整约束与某些非完整约束可以用微分形式的方程式来表示。不是所有的非完整约束都可以这样表示。含有广义速度的非完整约束就不能这样表示。所以,假若知道一个约束的微分形式的约束方程式,这约束到底是完整约束,还是非完整约束,需要看微分形式的约束方程式能否积分来决定。

表示非完整约束的方程式往往比较复杂。因此,非完整系统也比较难分析,只有简易一点的非完整系统能用形式论来分析。假如,一个非完整系统的约束可以用以下方程式表示:

则称此系统为半完整系统;这里, q ˙ j {\displaystyle {\dot {q}}_{j}} 是广义速度。

半完整系统可以用拉格朗日形式论来分析。更具体地说,分析半完整系统必须用到拉格朗日乘子 λ i {\displaystyle \lambda _{i}}

这里, λ i = λ i ( q 1 ,   q 2 ,   ,   q N ,   q ˙ 1 ,   q ˙ 2 ,   ,   q ˙ N ,   t ) {\displaystyle \lambda _{i}=\lambda _{i}(q_{1},\ q_{2},\ \dots ,\ q_{N},\ {\dot {q}}_{1},\ {\dot {q}}_{2},\ \dots ,\ {\dot {q}}_{N},\ t)} 是未知函数。

假设哈密顿原理成立,则下述方程式成立:

这里, L {\displaystyle L} 是拉格朗日量, t 1 {\displaystyle t_{1}} t 2 {\displaystyle t_{2}} 分别为积分的时间下限与上限。经过变分法运算,可以得到方程式

由于这 N {\displaystyle N} 个广义座标中,仍旧有 n {\displaystyle n} 个不独立广义座标,不能将拉格朗日方程式提取出来;必须加入拉格朗日乘子项目:

经过变分法运算,可以得到方程式

这里, F j {\displaystyle {\mathcal {F}}_{j}} 是广义力的 j {\displaystyle j} 分量:

虽然还有 n {\displaystyle n} 个不独立广义座标,仍旧可以调整 n {\displaystyle n} 加入的拉格朗日乘子,使总和公式内的每一个虚位移 δ q j {\displaystyle \delta q_{j}} 的系数都等于0。因此,

N {\displaystyle N} 个方程式加上 n {\displaystyle n} 个约束方程式,给予了 N + n {\displaystyle N+n} 个方程式来解 N {\displaystyle N} 个未知广义座标与 n {\displaystyle n} 个拉格朗日乘子。

非完整系统至少存在于以下三个状况:

相关

  • 南蝠南蝠(学名:Ia io)为蝙蝠科南蝠属的动物。分布于中国江西、广西、陕西、贵州、安徽、云南、四川、江苏、湖北等地,以及邻近印度,老挝,尼泊尔,越南和泰国北部。多见于岩洞。该物种的
  • 1974年1974年国际足联世界杯于1974年6月13日至7月7日于西德举行。东道主西德队在决赛中以 2–1 战胜橙色军团荷兰,于1954年后再次夺得世界杯冠军。本届比赛首次使用是现今的“FIFA
  • 迷魂记《迷魂记》(英语:Vertigo)是英国导演阿尔弗雷德·希区柯克于1958年所执导的心理惊悚片,改编自波瓦罗·纳尔瑟加克在1954年写的小说《活人与死人》。电影的剧本是由阿莱克斯·科
  • 谷固醇β-谷固醇(英语:β-Sitosterol,24β-乙基胆固醇,简称为谷固醇)是化学结构与胆固醇相似的多种植物固醇中的一种。β-谷固醇是具有特异气味的白色蜡状粉末,不溶于水而溶于乙醇。
  • 佛雷斯诺弗雷斯诺(英语:Fresno),美国华裔普遍简称弗市是美国加利福尼亚州的第五大城市,弗雷斯诺县县治。弗雷斯诺位建于广阔的加州中央谷地之上,是弗雷斯诺都会区的文化和经济中心。根据美
  • 巴拿马巴拿马是中美洲地区的一个国家,位于加勒比海和北太平洋之间,北接哥斯达黎加南邻哥伦比亚。巴拿马位于巴拿马地峡上,国土呈S形。在经纬度上,巴拿马位于北纬 7°至10°之间,西经77
  • 好莱坞山好莱坞山(英语:Hollywood Hills)是加利福尼亚州洛杉矶市中心(英语:Central Los Angeles)地区的一个山坡邻区。好莱坞山横跨圣莫尼卡山内的卡温格山道(英语:Cahuenga Pass)。
  • 新可口可乐新可口可乐(New Coke)是可口可乐公司在1985年4月23日发售的可口可乐产品的非官方名称,以取代可口可乐的原有配方。在1980年代前期可口可乐的市场份额遭到了百事可乐的追赶,因此
  • 河田鸡河田鸡为福建的一个肉鸡品种。主要分布于福建省长汀县和上杭县,属于肉用品种。河田鸡被列入《中国家禽品种志》、国家级畜禽遗传资源保护名录及中国地理标志产品,长汀县河田鸡
  • 谈谈方法《谈谈方法》(),全名《谈谈正确引导理性在各门科学上寻找真理的方法》(法语:Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les science