1 − 2 + 4 − 8 + …

✍ dations ◷ 2025-04-26 13:17:31 #发散级数,交错级数

在数学中,1 − 2 + 4 − 8 + …是一个无穷级数,它的每一项都是2的幂而加减号则是交错地排列。作为几何级数, 它以 1 为首项,-2为公比。

作为实数级数,它发散到无穷,所以在一般意义下它的和不存在。在更广泛的意义下,这一级数有一个广义的和为⅓。

戈特弗里德·莱布尼茨于1673年已经细想过1 − 2 + 4 − 8 + …这个交替的发散级数。他认为经过从右边或左边相减,分别可以得到正无限及负无限,所以两个答案都是错的,而整个级数必为有限:

莱布尼兹并不是非常肯定这个级数有,但是他根据墨卡托方法推测它和⅓有关系。 在十八世纪,“一个数项级数的和可能等于一个并不是其逐项叠加的结果的有限数”是一个十分普通的观点,尽管现代数学观点同当时的观点并没有任何分别。

当克里斯提安·沃尔夫在1712年阅读了莱布尼兹对格兰迪级数的解法后, 他对此解法非常满意,并设法通过这种方法去寻求更多解决发散级数问题的数学方法(如 1 − 2 + 4 − 8 + 16 − …)。简明地说,如果某人以倒数第二项的函数来表示级数的部分和的话,他得到的结果会是 4 m + 1 3 {\displaystyle {\tfrac {4m+1}{3}}} = ,讨论到无限后就得到了级数和是 ⅓ 。莱布尼兹的直觉在这时让他避免了在沃尔夫的解法上费力气。他给沃尔夫回信,说他的解法有点意思,但是因几个原因而无效。 相邻的两个部分和并不收敛到任何一个特定值上,同时在任何有限条件下都有 = 2,而不是 = 。总之,可求和级数的项最终都应收敛到零;即使 1 − 1 + 1 − 1 + … 也可以被表示成这种级数的极限。莱布尼兹劝沃尔夫再好好考虑一下,认为他说不定“可以搞出一些于他于科学都有价值的东西。”

任何具有规律性、线性和稳定性的求和方法都能对等比数列(几何级数)求和

在这种情况下 = 1 且 = −2,所以级数和是 ⅓。

在他1755年的《Institutiones》上,莱昂哈德·欧拉采用了现在被称为欧拉变换的方式处理1 − 2 + 4 − 8 + …,得到了收敛级数½ − ¼ + ⅛ − 1/16 + …。因为后者的和为⅓,欧拉得出结论,认为1 − 2 + 4 − 8 + … = ⅓。他对于无穷级数的看法不太遵循现代方法。如今,我们称1 − 2 + 4 − 8 + …是欧拉可求和,其欧拉和是⅓。

欧拉变换以正项序列开始:

而前向差分序列是

这一序列与上一序列正好相同。因此对于每一,迭代前向差分序列均以Δ0 = 1开始。级数的欧拉变换如下:

上述级数是一收敛等比级数,按常规求和公式得出其和为⅓。

1 − 2 + 4 − 8 + … 的博雷尔和也是 ⅓;博雷尔于1896年介绍了博雷尔和极限的公式,这是他在关于1 − 1 + 1 − 1 + …后的首个实例之一。

相关

  • 红眼结膜炎(英语:Conjunctivitis,亦称Pink Eye),俗称红眼症,是一种发生在结膜的炎症,也会发生在眼睑内侧表面,会让眼睛泛红或带有粉红色,可能会很痒、疼痛、有灼热感或搔痒感,罹患结膜炎的
  • 下莱茵省下莱茵省(法语:Bas-Rhin)是法国的一个省,属于大东部大区,编号为67。下莱茵省是法国大革命期间,根据1789年12月22日的法律,于1790年3月4日建立的。它南与上莱茵省,西南与孚日省、默尔
  • BOOMERanG毫米波段气球观天计划 (BOOMERanG experiment,Balloon Observations Of Millimetric Extragalactic Radiation and Geophysics),又名回力镖计划,是三次以高空气球在次轨道飞行测
  • 国军第十军国民革命军第十军,1926年8月初,湖南湘西洪江黔军第二师被国民政府军事委员会改编为国民革命军第十军,王天培任军长,金汉鼎任副军长,高冠吾任参谋长, 周仲良任党代表,甘嘉仪任秘书长
  • 广东工业大学广东工业大学(英语:Guangdong University of Technology,缩写作:GDUT),通常简称广工,是一所位于中华人民共和国广东省广州市的公立大学,隶属广东省教育厅。广东工业大学前身主体为广
  • 华约联盟高水平大学自主选拔学业能力测试,又称AAA测试,是上海交通大学、中国科学技术大学、西安交通大学、南京大学、浙江大学和清华大学在高校自主招生中联合举办的自主选拔联考,即民
  • 夏 潮夏潮(1956年8月-),湖南常宁人,中国文学艺术界联合会原党组成员、副主席、书记处书记,第十二、十三届全国政协委员。
  • 馒头蟹总科馒头蟹科黎明蟹科馒头蟹总科(Calappoidea) 是短尾下目下的一个超科,下分馒头蟹科和黎明蟹科。 其化石记录最早可追溯到阿普第阶。
  • 贝叶斯推断贝叶斯推断(英语:Bayesian inference)是推论统计的一种方法。这种方法使用贝叶斯定理,在有更多证据及信息时,更新特定假设的概率。贝叶斯推断是统计学(特别是数理统计学)中很重要的
  • 有机铍化学有机铍化学是研究含有铍-碳键的化学分支。有机铍化合物中,铍都以+2价的形式出现。有机铍化合物具有很高的毒性,对空气和水敏感。二烃基铍是有机铍化合物的一种,可由格氏试剂或