1 − 2 + 4 − 8 + …

✍ dations ◷ 2025-11-29 15:37:14 #发散级数,交错级数

在数学中,1 − 2 + 4 − 8 + …是一个无穷级数,它的每一项都是2的幂而加减号则是交错地排列。作为几何级数, 它以 1 为首项,-2为公比。

作为实数级数,它发散到无穷,所以在一般意义下它的和不存在。在更广泛的意义下,这一级数有一个广义的和为⅓。

戈特弗里德·莱布尼茨于1673年已经细想过1 − 2 + 4 − 8 + …这个交替的发散级数。他认为经过从右边或左边相减,分别可以得到正无限及负无限,所以两个答案都是错的,而整个级数必为有限:

莱布尼兹并不是非常肯定这个级数有,但是他根据墨卡托方法推测它和⅓有关系。 在十八世纪,“一个数项级数的和可能等于一个并不是其逐项叠加的结果的有限数”是一个十分普通的观点,尽管现代数学观点同当时的观点并没有任何分别。

当克里斯提安·沃尔夫在1712年阅读了莱布尼兹对格兰迪级数的解法后, 他对此解法非常满意,并设法通过这种方法去寻求更多解决发散级数问题的数学方法(如 1 − 2 + 4 − 8 + 16 − …)。简明地说,如果某人以倒数第二项的函数来表示级数的部分和的话,他得到的结果会是 4 m + 1 3 {\displaystyle {\tfrac {4m+1}{3}}} = ,讨论到无限后就得到了级数和是 ⅓ 。莱布尼兹的直觉在这时让他避免了在沃尔夫的解法上费力气。他给沃尔夫回信,说他的解法有点意思,但是因几个原因而无效。 相邻的两个部分和并不收敛到任何一个特定值上,同时在任何有限条件下都有 = 2,而不是 = 。总之,可求和级数的项最终都应收敛到零;即使 1 − 1 + 1 − 1 + … 也可以被表示成这种级数的极限。莱布尼兹劝沃尔夫再好好考虑一下,认为他说不定“可以搞出一些于他于科学都有价值的东西。”

任何具有规律性、线性和稳定性的求和方法都能对等比数列(几何级数)求和

在这种情况下 = 1 且 = −2,所以级数和是 ⅓。

在他1755年的《Institutiones》上,莱昂哈德·欧拉采用了现在被称为欧拉变换的方式处理1 − 2 + 4 − 8 + …,得到了收敛级数½ − ¼ + ⅛ − 1/16 + …。因为后者的和为⅓,欧拉得出结论,认为1 − 2 + 4 − 8 + … = ⅓。他对于无穷级数的看法不太遵循现代方法。如今,我们称1 − 2 + 4 − 8 + …是欧拉可求和,其欧拉和是⅓。

欧拉变换以正项序列开始:

而前向差分序列是

这一序列与上一序列正好相同。因此对于每一,迭代前向差分序列均以Δ0 = 1开始。级数的欧拉变换如下:

上述级数是一收敛等比级数,按常规求和公式得出其和为⅓。

1 − 2 + 4 − 8 + … 的博雷尔和也是 ⅓;博雷尔于1896年介绍了博雷尔和极限的公式,这是他在关于1 − 1 + 1 − 1 + …后的首个实例之一。

相关

  • 磺胺多辛磺胺多辛是一种磺胺类药物,其INN名称是“Sulfadoxine”。该药物可用于治疗疟疾等病症。该药物在血液中的半衰期暂时未知,在大鼠体内的LD50(半致死量)为1.8756mol/kg。该药物目前
  • 叶尼塞语系叶尼塞语系(Yeniseic 或 Yenisei-Ostyak)是分布在西伯利亚中部叶尼塞河流域的一个语族。包括7种语言:其中的Yug、Pumpokol、Arin和Assan早在18世纪消亡了,我们对这些语言所知甚
  • 航天科技集团中国航天科技集团有限公司(英语:China Aerospace Science and Technology Corporation,简称英语:CASC)是中华人民共和国国务院管理的国有特大型企业集团,总部位于北京,成立于1999年
  • 战神五号name = 'Aero', description = '航空太空科技(航空航天科技)', content = {{ type = 'text', text = [=[本页面没有类似于NoteTA的数量限制。 请自行修改分类名。在NoteTA样板
  • 韩式凉面凉面是一种食物的组合方式,是以油面、酱油、麻酱及小黄瓜等配料组合而成的食物, 在台湾宵夜及早餐店颇负盛名。部分凉面专卖店的凉面也是以微温的方式上菜以确保麻酱遇热散发
  • 肠抑胃素肠抑胃素(英语:Enterogastrone)是指小肠上部(十二指肠)黏膜分泌到消化道上游的激素。在进食脂肪后,小肠黏膜可以释放肠抑胃素,抑制胃液的分泌和食糜的运动。例子包括:
  • font color=#ffffff四川/font四川省高等学校列表是中国大陆高等学校列表的四川省部分。截至2017年5月31日,四川共有35所公立本科高校、16所民办本科高校、40所公立专科高校、18所民办专科高校、17所成人
  • 汤 恒汤恒(1965年7月-),中华人民共和国外交官,现任中华人民共和国驻哥斯达黎加共和国特命全权大使。
  • 吴越民系吴越民系,即江浙民系,或为吴越人(沪语: )、江浙人,主要分布于江苏南部、上海全境、浙江全境、安徽东南部(黄山市、宣城市、池州市)、江西省东北部(上饶市)和福建北部。吴越地区历史和
  • 约翰·梅纳德·凯恩斯约翰·梅纳德·凯恩斯,第一代凯恩斯男爵(英语:John Maynard Keynes, 1st Baron Keynes,1883年6月5日-1946年4月21日),一般称作凯恩斯(或译为凯因斯),英国经济学家。一反自18世纪亚当·