首页 >
无限面体
✍ dations ◷ 2025-11-30 03:24:18 #无限面体
无限面体(英语:Apeirohedron),是多面体的一种,意指有无限个面、无限条边和无限个顶点的多面体。一般是指所有的平面密铺的集合。在欧几里得几何中,无限面体是一个退化多面体,其面数是可数集的数量,其边数与顶点数将符合V-E+F= 2,但只能利用求极限得出。无限面体跟多面体一样,有面、边、顶点、和角,角也包含有二面角,只是他们全部共面。无限面体并不是球,因为在多面体的定义中,面不能为曲面、边不能为曲线。无限面体为无限边形在三维空间的类比,与平面镶嵌是等价的。无限面体可以密铺空间,如同无限边形密铺平面,两个无限面体面体即可堆砌填满整个空间,这种几何结构称为二阶无限面体堆砌。一般对两种主要无限面体类型有研究:正无限面体是正多面体的一种,是指每个面都全等、每条边都等长、每个角都等角的无限面体,就如同一般的正多面体。其二面角为180度,为一平角。满足这些条件的几何图形只有平面镶嵌,在施莱夫利符号中用{p,q}表示,其中p、q满足等式(p-2)(q-2) = 4。正无限面体可以有外接球和内切球,但他们的半径必须是无限大。无限胞体(英语:Apeirotope)意指有无限个面、无限个胞、无限条边和无限个顶点的多胞体。其性质皆与无限面体相似,由空间密铺即空间堆砌组成。四维空间的正无限胞体只有一种,即立方体堆砌。扭歪无限面体也是一种无限面体,其与一般无限面体差异在于扭歪无限面体并非所有顶点都共面,可以视为无限边形与扭歪无限边形之差异在三维空间的类比。所有面都全等、角也相等的扭歪无限面体为正扭歪无限面体。三维空间的正扭歪无限面体有三种:此外,由于双曲镶嵌也是由无限多个双曲平面构成的图形,因此双曲镶嵌也可以做为一种无限面体。
相关
- 衣壳衣壳是病毒的蛋白质外壳,又称为壳体。衣壳是由病毒衣壳蛋白亚基所形成的寡聚体。衣壳的作用是用于包裹病毒的遗传物质(核酸)。衣壳的类型大致是按它们的形态来分类的。不同的病
- HClOsub3/sub氯酸,化学式为HClO3,是氯的含氧酸之一,其中氯的氧化态为+5。它具强酸性(pKa≈−1)及强氧化性,可用于制取多种氯酸盐。它可由氯酸钡与硫酸反应,并滤去硫酸钡沉淀得到:或用次氯酸加热
- 恐怖袭击恐怖活动(英语:terror)是指恐怖份子制造的危害社会稳定、危及平民的生命与财产安全的一切形式的活动,通常表现为针对平民的大规模伤害、袭击公共交通工具和绑架等形式,与恐怖活动
- 布洛赫波在固体物理学中,布洛赫波(Bloch wave)是周期性势场(如晶体)中粒子(一般为电子)的波函数,又名布洛赫态(Bloch state)。布洛赫波因其提出者美籍瑞士裔物理学家菲利克斯·布洛赫而得名。
- 外曾祖母曾祖父母(英语:Great grandparents)是祖父的父亲母亲;又称爷爷的父亲母亲。自己则分别是曾祖父母的曾孙子或曾孙女。在北方地区习惯称呼曾祖父称为“太爷爷”,曾祖母为“太奶奶”
- 新即物主义新即物主义(Neue Sachlichkeit,亦称新客观主义)是绘画,文学与建筑相关的风格,特别对于1920年代深具意义。这个名称由1925年艺术评论家古斯塔夫·弗雷德礼西·哈特拉伯(Gustav Frie
- 企鹅出版集团企鹅出版集团(Penguin Books)是一个在1935年于英国创立的出版社,创始人是艾伦·莱恩(Allen Lane),主要出版纸版书籍,是英国、新西兰、澳大利亚和印度的主流出版商。其ISBN注册号为0
- 王奇王奇(1963年5月-),现任清华大学历史系副教授,北京大学国际关系学士、圣彼得堡国立大学历史学博士。因在《中俄国界东段学术史研究:中国、俄国、西方学者视野中的中俄国界东段问题
- 晴雯晴雯,中国古典小说《红楼梦》的主要人物,是服侍故事主人公贾宝玉的几个大丫鬟之一,金陵十二钗又副册之一,水蛇腰,削肩膀,眉眼有点像林黛玉。“晴为黛影”,书中暗示她映衬的角色是林
- 脑内去甲肾上腺素通道系统/蓝斑核系统蓝斑核(Locus Coeruleus),简称蓝斑,亦称青斑核,是位于脑干的一个神经核团。其功能与压力反应有关。菲力克斯·维克-达吉尔最早发现了蓝斑这一解剖构造。蓝斑位于第四脑室底,脑桥前
