无限面体

✍ dations ◷ 2025-04-04 11:13:10 #无限面体
无限面体(英语:Apeirohedron),是多面体的一种,意指有无限个面、无限条边和无限个顶点的多面体。一般是指所有的平面密铺的集合。在欧几里得几何中,无限面体是一个退化多面体,其面数是可数集的数量,其边数与顶点数将符合V-E+F= 2,但只能利用求极限得出。无限面体跟多面体一样,有面、边、顶点、和角,角也包含有二面角,只是他们全部共面。无限面体并不是球,因为在多面体的定义中,面不能为曲面、边不能为曲线。无限面体为无限边形在三维空间的类比,与平面镶嵌是等价的。无限面体可以密铺空间,如同无限边形密铺平面,两个无限面体面体即可堆砌填满整个空间,这种几何结构称为二阶无限面体堆砌。一般对两种主要无限面体类型有研究:正无限面体是正多面体的一种,是指每个面都全等、每条边都等长、每个角都等角的无限面体,就如同一般的正多面体。其二面角为180度,为一平角。满足这些条件的几何图形只有平面镶嵌,在施莱夫利符号中用{p,q}表示,其中p、q满足等式(p-2)(q-2) = 4。正无限面体可以有外接球和内切球,但他们的半径必须是无限大。无限胞体(英语:Apeirotope)意指有无限个面、无限个胞、无限条边和无限个顶点的多胞体。其性质皆与无限面体相似,由空间密铺即空间堆砌组成。四维空间的正无限胞体只有一种,即立方体堆砌。扭歪无限面体也是一种无限面体,其与一般无限面体差异在于扭歪无限面体并非所有顶点都共面,可以视为无限边形与扭歪无限边形之差异在三维空间的类比。所有面都全等、角也相等的扭歪无限面体为正扭歪无限面体。三维空间的正扭歪无限面体有三种:此外,由于双曲镶嵌也是由无限多个双曲平面构成的图形,因此双曲镶嵌也可以做为一种无限面体。

相关

  • 丝足虫类丝足虫门是一类原生动物,属于有孔虫界. 也有人主张丝足虫独立为一界.丝足虫的主要特征是通过丝状伪足摄食,没有真实的胞口。
  • 高收入经济体高收入经济体(high-income economy),根据世界银行的定义,使用图表集法计算的人均国民总收入超过某个标准的经济体,称为高收入经济体。此标准在2018年为12,355美元。“高收入经济
  • 艾蒂安-路易·马吕斯艾蒂安-路易·马吕斯(法语:Étienne Louis Malus,1775年7月23日-1812年2月24日),法国官员、工程师、物理学家和数学家。马吕斯出生于法国巴黎。他参加了拿破仑的远征远征到埃及(179
  • 丁 林丁林(1965年7月-),生于安徽萧县,中国科学院青藏高原研究所研究员,中国科学院院士。主要从事青藏高原地质学研究。1988年,毕业于北京大学地质学系,获构造与地质力学专业学士学位。199
  • 中国部分地区两广,又称两粤,是中国地名合称。起源于明朝代宗景泰三年,名臣于谦奏请设两广总督,明宪宗成化六年成定制,治所设位处两广交界之梧州(今属广西壮族自治区),首任两广总督为韩雍。在清朝
  • 驯养业驯化(英语:Domestication)是指一种生物的成长与生殖逐渐受另一种生物利用与掌控的过程,例如人类栽培各种农作物、畜牧,以及切叶蚁驯养真菌。人类驯化动植物的目的主要包括作为食
  • 澳大利亚政府澳大利亚主题澳大利亚政府(英语:Government of Australia)是君主立宪联邦议会制国家澳大利亚联邦的政府,通常也被称为“澳大利亚政府”或“澳大利亚联邦政府”。澳大利亚联邦成
  • 山脉列表山脉列表,依照“洲”顺序排列,包括现已发现和命名的天体的山脉。
  • 慈安孝贞显皇后(满语:ᡥᡳᠶᠣᠣᡧᡠᠩᡤᠠ ᠵᡝᡴᡩᡠᠨ ᡳᠯᡝᡨᡠ ᡥᡡᠸᠠᠩᡥᡝᠣ,穆麟德:hiyoošungga jekdun iletu hūwangheo,太清:hiyouxungga jekdun iletu hvwangheu;1837
  • 蕉鹃目蕉鹃(学名:Musophagidae),是蕉鹃目蕉鹃科的鸟类。