汉明码

✍ dations ◷ 2025-11-04 08:51:42 #电信,错误检测与校正

在电信领域中,汉明码(英语:hamming code),也称为海明码,是(7,4)汉明码(英语:Hamming(7,4))推广得到的一种线性纠错码,由理查德·卫斯里·汉明于1950年发明。相比而言,简单的奇偶检验码除了不能纠正错误之外,也只能侦测出奇数个的错误。汉明码是完备码(英语:perfect code),它在于它分组长度相同、最小距离为3的码中能达到最高的码率。

用数学术语来说,汉明码是一种二元线性码。对于所有整数 ≥ 2,存在一个分组长度 = 2 − 1、 = 2 − − 1 编码。因此汉明码的码率为 = / = 1 − / (2 − 1),对于最小距离为3、分组长度为 2 − 1 的码来说是最高的。汉明码的奇偶检验矩阵的是通过列出所有长度为 的非零列向量构成的。

汉明码的发明者理查德汉明在1940年代晚期,运用贝尔模型V(Bell Model V)电脑于贝尔实验室(Bell Labs)工作。输入端是依靠打孔卡(Punched Card),这不免会造成些读取错误。在工作日,当机器检测到错误将停止并闪灯(flash lights),使得操作员能够解决这个错误。在周末和下班期间,没有操作者的情况下,机器只会简单地转移到下一个工作。

汉明在周末工作,他对于不可靠的读卡机发生错误后,总是不得不重新启动程序变得愈来愈沮丧。在接下来的几年中,他为了解决侦错的问题,开发了功能日益强大的侦错算法。在1950年,他发表了今日所称的汉明码,并且时至今日仍在ECC memory上显示其应用价值。

人们在汉明码出现之前使用过多种检查错误的编码方式,但是没有一个可以在和汉明码在相同空间消耗的情况下,得到相等的效果。

奇偶校验是一种添加一个奇偶位用来指示之前的数据中包含有奇数还是偶数个1的检验方式。如果在传输的过程中,有奇数个位发生了改变,那么这个错误将被检测出来(注意奇偶位本身也可能改变)。一般来说,如果数据中包含有奇数个1的话,则将奇偶位设定为1;反之,如果数据中有偶数个1的话,则将奇偶位设定为0。换句话说,原始数据和奇偶位组成的新数据中,将总共包含偶数个1.

奇偶校验并不总是有效,如果数据中有偶数个位发生变化,则奇偶位仍将是正确的,因此不能检测出错误。而且,即使奇偶校验检测出了错误,它也不能指出哪一位出现了错误,从而难以进行更正。数据必须整体丢弃并且重新传输。在一个噪音较大的媒介中,成功传输数据可能需要很长时间甚至不可能完成。虽然奇偶校验的效果不佳,但是由于他只需要一位额外的空间开销,因此这是开销最小的检测方式。并且,如果知道了发生错误的位,若将该位取反,奇偶校验还可以恢复数据。

如果一条信息中包含更多用于纠错的位,且通过妥善安排这些纠错位使得不同的出错位产生不同的错误结果,那么我们就可以找出出错位了。在一个7位的信息中,单个位出错有7种可能,因此3个错误控制位就足以确定是否出错及哪一位出错了。

汉明研究了包括五取二码在内的编码方案,并归纳了他们的想法。

下列通用算法可以为任意位数字产生一个可以纠错一位(英语:Single Error Correcting)的汉明码。

采用奇校验还是偶校验都是可行的。偶校验从数学的角度看更简单一些,但在实践中并没有区别。

校验位一般的规律可以如下表示:

表中只给出了20个编码后的位(5个奇偶校验位,15个数据位)。观察上表可发现一个比较直观的规律:第i个检验位是第2i-1位,从该位开始,检验2i-1位,跳过2i-1位……依次类推。例如上表中第3个检验位p4从第23-1=4位开始,检验4、5、6、7共4位,然后跳过8、9、10、11共4位,再检验12、13、14、15共4位……

要检查某一位的错误,则需检查某一位所包含的所有奇偶校验位。这种错误的模式被叫做伴随式错误。如果所有奇偶校验位是正确的,就没有错误。除此以外的情况,错误的奇偶校验位的位置的和将识别错误的位。例如,如果位置为1、2、8的奇偶校验位指示了一个错误,那么位置为1+2+8=11的位出错了。如果只有一个奇偶校验位指示了错误,那么该奇偶校验位自身出错了。



对11000010进行汉明编码,求编码后的码字。

1.列出表格,从左往右(或从右往左)填入数字,但2的次方的位置不填。

2.把数据行有1的列的位置写为二进制。

3.收集所有二进制数字,求异或。 0011 0101 1011 = 1101 {\displaystyle 0011\oplus 0101\oplus 1011=1101} ,,1,0,,1,1)。

(7,4)汉明码可以很容易地编码为一个(8,4)码,通过在(7,4)编码词()上附加一个额外的奇偶位。

这可以用下面修正的矩阵相加:

注意, H {\displaystyle \mathbf {H} } 并非用标准形式表示。为了得到 G {\displaystyle \mathbf {G} } ,原子行操作能够被用来获得一个等价的矩阵对陈形式的 H {\displaystyle \mathbf {H} }

相关

  • 赫尔曼·马克赫尔曼·弗朗西斯·马克(英语:Herman Francis Mark,1895年5月3日-1992年4月6日),奥地利裔美国化学家,致力于高分子化学的发展。马克利用X射线衍射研究纤维分子结构,并由此提供了高分
  • 费林加伯纳德·卢卡斯·“本”·费林加(荷兰语:Bernard Lucas "Ben" Feringa,1951年5月18日-),荷兰化学家、格罗宁根大学教授,拥有中华人民共和国永久居留权,2016年诺贝尔化学奖得主。费林
  • 木骨架木骨架是一种将木柴利用雌雄榫连结在一起 ,以构成建筑结构的的建筑技术。这一技术的历史可以追溯到几千年前,在世界各地的建筑中都有应用。 欧洲地区主要应用在12世纪至19世纪
  • 载瓦语载瓦语(载瓦语:Zaiwa mying,国际音标:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Genti
  • 攻陷韩国首都汉城第一次汉城战役,1950年6月25日朝鲜战争开始后,朝鲜人民军迅速击溃大韩民国国军,并在6月26日展开对大韩民国首都汉城(今首尔)的攻势,由于大韩民国国军军备较弱,再加上事前准备不足,守
  • 巴尔科赫巴起义巴尔科赫巴起义,也称巴柯巴之乱,是公元132年-135年发生于罗马帝国犹太行省的一次叛乱事件。此次战争是罗马帝国境内犹太人发起的第三次(如果不计主要不在犹太行省发生的克托斯战
  • 福塔莱萨福塔莱萨(葡萄牙语:Fortaleza),又译作福塔雷萨,该名称为葡萄牙语“堡垒”之意。福塔莱萨是巴西北部重要经济城市。塞阿腊州政府所在地及重要港口。2018年都会区人口约400万人,被认
  • 杰夫·福斯特杰弗里·道格拉斯·福斯特(英语:Jeffrey Douglas Foster,1977年1月16日-),前美国职业篮球运动员,司职中锋,绰号“篮板痴汉”。福斯特出生于得克萨斯州圣安东尼奥,大学就读于得克萨斯
  • 大节竹属大节竹属(学名:)是禾本科下的一个属,为灌木或乔木状竹。该属共有20种,分布于中国和越南。
  • 猛追湾街道猛追湾街道,是中华人民共和国四川省成都市成华区下辖的一个乡镇级行政单位。2019年12月,成华区调整部分街道行政区划,撤销桃蹊路街道和建设路街道,将原桃蹊路街道踏水社区和原建