分离变量法

✍ dations ◷ 2024-12-23 05:57:56 #微分方程,偏微分方程

牛顿 · 莱布尼兹 · 柯西 · 魏尔斯特拉斯  · 黎曼 · 拉格朗日 · 欧拉 · 帕斯卡 · 海涅(英语:Eduard Heine) · 巴罗 · 波尔查诺 · 狄利克雷 · 格林 · 斯托克斯 · 若尔当 · 达布 · 傅里叶 · 拉普拉斯 · 雅各布·伯努利 · 约翰·伯努利 · 阿达马 · 麦克劳林 · 迪尼 · 沃利斯 · 费马 · 达朗贝尔 · 黑维塞 · 吉布斯 · 奥斯特罗格拉德斯基 · 刘维尔 · 棣莫弗 · 格雷果里 · 玛达瓦(英语:Madhava of Sangamagrama) · 婆什迦罗第二 · 阿涅西 · 阿基米德

从无穷小量分析来理解曲线(英语:Analyse des Infiniment Petits pour l'Intelligence des Lignes Courbes) · 分析学教程(英语:Cours d'Analyse) · 无穷小分析引论 · 用无穷级数做数学分析(英语:De analysi per aequationes numero terminorum infinitas) · 流形上的微积分(英语:Calculus on Manifolds (book)) · 微积分学教程 · 纯数学教程(英语:A Course of Pure Mathematics) · 机械原理方法论(英语:The Method of Mechanical Theorems)

数学上,分离变量法是一种解析常微分方程或偏微分方程的方法。使用这方法,可以藉代数来将方程重新编排,让方程的一部分只含有一个变量,而剩余部分则跟此变量无关。这样,隔离出的两个部分的值,都分别等于常数,而两个部分的值的代数和等于零。

假若,一个常微分方程可以写为

设定变量 y = f ( x ) {\displaystyle y=f(x)} 。那么,

只要是 h ( y ) 0 {\displaystyle h(y)\neq 0} ,就可以将方程两边都除以 h ( y ) {\displaystyle h(y)} ,再都乘以 d x {\displaystyle dx}

这样,可以将两个变量 x {\displaystyle x} y {\displaystyle y} 分离到方程的两边。由于任何一边的表达式跟另外一边的变量无关,表达式恒等于常数 k {\displaystyle k} 。因此,可以得到两个较易解的常微分方程;

有些不喜欢用莱布尼茨标记(英语:Leibniz's notation)的数学家,或许会选择将公式 (1) 写为

这写法有一个问题:无法比较明显的解释,为什么这方法叫作分离变量法?

随着 x {\displaystyle x} 积分公式的两边,可以得到

应用变量积分法,

假如,可以求算这两个积分,则这常微分方程有解。这方法允许将导数 d y d x {\displaystyle {\frac {dy}{dx}}} 当做可分的分式看待,可以较方便的解析可分的常微分方程。这在实例 (II)的解析里会有更详细的解释,

常微分方程 d d x f ( x ) = f ( x ) ( 1 f ( x ) ) {\displaystyle {\frac {d}{dx}}f(x)=f(x)(1-f(x))} 可以写为

其中, y = f ( x ) {\displaystyle y=f(x)}

设定 g ( x ) = 1 {\displaystyle g(x)=1} h ( y ) = y ( 1 y ) {\displaystyle h(y)=y(1-y)} 。套用公式 (1) ,这常微分方程是可分的。

进一步编排,则

变量 x {\displaystyle x} y {\displaystyle y} 分别在公式的两边。将两边积分,

积分的结果是

其中, C {\displaystyle C} 是个积分常数。稍加运算,则可得

在这里,检查此解答的正确与否。计算导数 d y d x {\displaystyle {\frac {dy}{dx}}} 。答案应该与原本的问题相同。(必须仔细地计算绝对值。绝对符号内不同的正负值,分别地造成了 B {\displaystyle B} 的正值与负值。而当 y = 1 {\displaystyle y=1} 时, B = 0 {\displaystyle B=0} )。

特别注意,由于将公式 (3) 的两边除以 y {\displaystyle y} ( 1 y ) {\displaystyle (1-y)} ,必须检查两个函数 y ( x ) = 0 {\displaystyle y(x)=0} y ( x ) = 1 {\displaystyle y(x)=1} 是否也是常微分方程的解答(在这个例子里,它们都是解答)。参阅奇异解(英语:singular solution) 。

人口数值的成长时常能够用常微分方程来表达

其中, P {\displaystyle P} 是人口数值函数, t {\displaystyle t} 是时间参数, k {\displaystyle k} 是成长的速率, K {\displaystyle K} 环境的容纳能力。

将方程的两边都除以 P ( 1 P K ) {\displaystyle P\left(1-{\frac {P}{K}}\right)} .再随着时间 t {\displaystyle t} 积分,

应用变量积分法,

稍微运算,则可得

其中, A {\displaystyle A} 是常数。

给予一个 n {\displaystyle n} 元函数 F ( x 1 ,   x 2 ,   ,   x n ) {\displaystyle F(x_{1},\ x_{2},\ \dots ,\ x_{n})} 的偏微分方程,有时候,为了将问题的偏微分方程改变为一组常微分方程,可以猜想一个解答;解答的形式为

或者

时常,对于每一个自变量 x i {\displaystyle x_{i}} ,都会伴随着一个分离常数。如果,这个方法成功,则称这偏微分方程为可分偏微分方程 (separable partial differential equation)。

假若,函数 F ( x ,   y ,   z ) {\displaystyle F(x,\ y,\ z)} 的偏微分方程为

猜想解答为

那么,

因为 X ( x ) {\displaystyle X(x)} 只含有 x {\displaystyle x} Y ( y ) {\displaystyle Y(y)} 只含有 y {\displaystyle y} Z ( z ) {\displaystyle Z(z)} 只含有 z {\displaystyle z} ,这三个函数的导数都分别必须等于常数。更明确地说,将一个偏微分方程改变为三个很简单的常微分方程:

其中, c 1 ,   c 2 ,   c 3 {\displaystyle c_{1},\ c_{2},\ c_{3}} 都是常数, c 1 + c 2 + c 3 = 0 {\displaystyle c_{1}+c_{2}+c_{3}=0}

偏微分方程的答案为

其中, c 4 {\displaystyle c_{4}} 是常数。

思考一个典型的偏微分方程,

首先,猜想答案的形式为

代入偏微分方程,

或者,用单撇号标记,

将方程的两边除以 X ( x ) Y ( y ) {\displaystyle X(x)Y(y)} ,则可得

由于任何一边的表达式跟另外一边的变量无关,表达式恒等于常数 k {\displaystyle k}

因此,可以得到两个新的常微分方程:

这两个常微分方程都是齐次的二阶线性微分方程。假若, k < 0 < λ + k {\displaystyle k<0<\lambda +k} ,则这两个常微分方程都是用来表达谐振问题的方程。解答为

其中, A x ,   A y {\displaystyle A_{x},\ A_{y}} 是振幅常数, B x ,   B y {\displaystyle B_{x},\ B_{y}} 是相位常数。这些常数可以由边界条件求得。

相关

  • 抚养未成年儿童家庭援助抚养未成年儿童家庭援助(Aid to Families with Dependent Children,简称AFDC)是1935年到1996年美国的一项联邦补助项目,由美国卫生及公共服务部所管理。该项目对于贫穷家庭的子
  • 火箭推进榴弹火箭推进榴弹是前苏联研制的单兵肩托式反装甲支援武器(英文:Rocket-propelled grenade,缩写:RPG;俄语:Ручной противотанковый гранатомет (РП
  • 宿翱航空宿翱航空(英语:Cebgo)是一间以菲律宾马尼拉帕赛市为总部的廉价航空公司,成立于邦板牙省,前称东南亚航空(SEAir, Inc. / South East Asian Airlines, Inc.)及菲律宾虎航(Tigerair Phi
  • 非活性气体惰性气体(inert gas)也称为非活性气体、无活性气体或不反应气体,是在一定条件下不会发生化学反应的气体。元素周期表上的18族元素一般条件和许多物质不会有化学反应,以往惰性气
  • 格陵兰因纽特人格陵兰因纽特人(格陵兰语:Kalaallit;丹麦语:Grønlandsk Inuit),又译为格陵兰伊努伊特人,以格陵兰语为母语的原住民(包含部分因欧混血),格陵兰的主体民族,具有丹麦公民权。在2012年格陵
  • 谭贞默谭贞默(1590年-1665年),字梁生,别号扫菴,浙江嘉兴县人,明末政治人物。谭昌言子。崇祯元年(1628年)戊辰科进士。授工部虞衡司主事,历升大理寺副、太仆寺少卿,累官国子监司业兼祭酒。清初
  • 间宫久留美间宫久留美(日语:間宮 くるみ,1976年11月10日-),日本女性配音员。81 Produce所属。出身于滋贺县野洲郡野洲町(今已并入改名为野洲市)。身高158cm。O型血。滋贺县立野洲高等学校(日语:
  • 氢的自旋异构体正氢和仲氢是分子氢的两种自旋异构体,这种异构现象是由于两个氢原子的核自旋有两种可能的偶合而引起的。正氢中两个核的自旋是平行的,仲氢中两个核的自旋则是反平行的。因此正
  • 车恩泽车恩泽(韩语:차은택,1969年12月16日-),韩国导演,被称为“鬼才导演”、“文化界皇太子”。因卷入崔顺实事件而被捕,并被检方起诉。车恩泽于1997年出道,此后转入幕后,以MTV导演的身份逐
  • 德文蛤属德文蛤属(学名:),是帘蛤目寄生蛤科的一个属。根据WoRMS,本属只有两个物种:下列物种被认为是同种异名: